-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathmain.py
151 lines (135 loc) · 5.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import logging
import transformers
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
)
from omegaconf import OmegaConf
from ingest_docs import ingest_docs
from data_gen import launch_data_generation
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores.faiss import FAISS
import argparse
from peft import prepare_model_for_int8_training
from utils import make_supervised_data_module, smart_tokenizer_and_embedding_resize
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"
def args_parse():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="config.yaml")
parser.add_argument("--local_rank", type=int, default=0)
return parser.parse_args()
def main():
args = args_parse()
cfg = OmegaConf.load(os.path.abspath(args.config))
# Logging setup
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Ingest documents related to API
api_docs = cfg.API_DOCS
logger.info(
"Indexing and embedding docs from {api}...".format(api=api_docs))
if cfg.GENERATE:
documents, documents_for_summary = ingest_docs(api_docs, recursive_depth=cfg.DEPTH_CRAWLING, logger=logger)
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(documents, embeddings)
logger.info(
"Done indexing and embedding docs from {api}...".format(api=api_docs))
logger.info("Code Generation...")
if cfg.SUMMARIZE_DOCS:
kwargs = {"documents_for_summary": documents_for_summary, "summary_embeds": True}
launch_data_generation(
url_docs=api_docs,
documents_embeds=vectorstore,
output_dir=cfg.DATA_PATH,
num_tasks_to_generate=cfg.NUM_TASKS_TO_GENERATE,
model_name=cfg.OPENAI_ENGINE,
num_prompt_instructions=cfg.NUM_PROMPT_INSTRUCTIONS,
logger=logger,
**kwargs)
logger.info("Done Generating Code...")
gradient_accumulation_steps = cfg.BATCH_SIZE // cfg.MICRO_BATCH_SIZE
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
model = LlamaForCausalLM.from_pretrained(
"jeffwan/vicuna-13b", load_in_8bit=True, device_map=device_map,
)
tokenizer = LlamaTokenizer.from_pretrained(
"jeffwan/vicuna-13b",
model_max_length=2048,
padding_side="right",
use_fast=False
)
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
tokenizer.add_special_tokens({
"eos_token": DEFAULT_EOS_TOKEN,
"bos_token": DEFAULT_BOS_TOKEN,
"unk_token": DEFAULT_UNK_TOKEN,
})
logger.info("Loaded model and tokenizer")
train_dataset, eval_dataset, data_collator = make_supervised_data_module(tokenizer=tokenizer, data_path=cfg.DATA_PATH + "data.json")
logger.info("Loaded dataset")
model = prepare_model_for_int8_training(model)
lora_config = LoraConfig(
r=cfg.LORA_R,
lora_alpha=cfg.LORA_ALPHA,
target_modules=["q_proj", "v_proj"],
lora_dropout=cfg.LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
trainer = transformers.Trainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=transformers.TrainingArguments(
per_device_train_batch_size=cfg.MICRO_BATCH_SIZE,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=cfg.WARMUP_STEPS,
num_train_epochs=cfg.EPOCHS,
learning_rate=cfg.LEARNING_RATE,
fp16=True,
logging_steps=10,
evaluation_strategy="no",
save_strategy="no",
output_dir=cfg.OUTPUT_DIR,
load_best_model_at_end=True,
ddp_find_unused_parameters=False,
remove_unused_columns=False
),
tokenizer=tokenizer,
data_collator=data_collator,
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *
_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
logger.info("Training Process begins ...")
trainer.train()
model.save_pretrained(cfg.OUTPUT_DIR)
if __name__ == "__main__":
main()