-
Notifications
You must be signed in to change notification settings - Fork 0
/
ma1505_cheat.tex
604 lines (443 loc) · 28.5 KB
/
ma1505_cheat.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
\documentclass[10pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage[landscape]{geometry}
\usepackage{hyperref}
\usepackage{amssymb,amsmath}
\usepackage{graphicx}
\usepackage{multirow}
% To make this come out properly in landscape mode, do one of the following
% 1.
% pdflatex latexsheet.tex
%
% 2.
% latex latexsheet.tex
% dvips -P pdf -t landscape latexsheet.dvi
% ps2pdf latexsheet.ps
% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
{\geometry{top=0.7cm,left=0.7cm,right=0.7cm,bottom=0.7cm} }
{\geometry{top=0.7cm,left=0.7cm,right=0.7cm,bottom=0.7cm} }
}
% Turn off header and footer
\pagestyle{empty}
% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}
\makeatother
% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
% Don't print section numbers
\setcounter{secnumdepth}{0}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
% -----------------------------------------------------------------------
\begin{document}
\raggedright
\footnotesize
\begin{multicols}{3}
% multicol parameters
% These lengths are set only within the two main columns
%\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}
\begin{center}
\Large{\textbf{$\mathbb{MA}1505$ Cheat Sheet}}\\\small{taken in AY 2015-2016 Semester I} \\
\end{center}
\section{Functions}
\begin{tabular}{@{}ll@{}}
$(f \pm g)(x)=f(x)\pm g(x)$ & $\lim_{x\to a}(f\pm g)(x) = L \pm L'$ \\
$(fg)(x) = f(x)g(x)$ & $\lim_{x\to a}(fg)(x) = LL'$ \\
$(f/g)(x) = f(x)/g(x)$ & $\lim_{x\to a}\frac{f}{g}(x) = \frac{L}{L'}$ \\
& $\lim_{x\to a} kf(x) = kL, k\in \mathbb{R}$\\
\end{tabular}
All polynomials are continuous at every point in $\mathbb{R}$.
All rational functions $\frac{p(x)}{q(x)}$ where $p$ and $q$ are polynomials are continuous at every point such that $q(x) \ne 0$.
Composition is given by $\circ$, e.g. $(f\circ g)(x) = f(g(x))$
\subsection{Differentiation}
\begin{tabular}{@{}ll@{}}
Product Rule & $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$\\
Quotient Rule & $\Big(\frac{f}{g}\Big)'(x) = \frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$ \\
Chain Rule & $(f\circ g)'(x) = f'(g(x))g'(x) = (f'\circ g)(x)g'(x)$ \\
& $\frac{dy}{dt} = \frac{dy}{dx}\times\frac{dx}{dt}$\\
\end{tabular}
\subsubsection{Maxima and Minima}
A function $f$ has a local/relative maximum value at a point $c$ in its domain if $f(x) \leq f(c)$ for all $x$ in the neighborhood of $c$.
The function has an absolute maximum value at $c$ if $f(x) \leq f(c)$ for all $x$ in the domain.
Reverse signs for minimum.
\subsubsection{Extreme and Critical Points}
Points where $f$ can have an extreme value are: interior points where $f'(x)=0$, interior points where $f'(x)$ does not exist and end points of the domain of $f$.
An interior point of the domain of a function $f$ where $f'$ is zero or does not exist is a \emph{critical point} of $f$.
\subsubsection{Increasing or Decreasing Functions}
$f$ is increasing on an interval $I$ when $f'(x) > 0$ for all $x\in I$.
$f$ is decreasing on an interval $I$ when $f'(x) < 0$ for all $x\in I$.
\subsubsection{Concavity}
The graph of $y=f(x)$ is concave down on any interval where $y''<0$ and concave up on any interval where $y''>0$.
A point $c$ is a point of inflection of the function $f$ if $f$ is continuous at $c$ and there is an open interval containing $c$ such that the graph of $f$ changes from concave up (or down) to concave down (or up).
The function need not be differentiable at $c$.
\subsubsection{Derivative Tests for Maxima and Minima}
\textbf{First derivative test:}
Suppose $c\in(a,b)$ is a critical point of $f$.
If $f'(x) > 0$ for $x \in (a,c)$ and $f'(x) < 0$ for $x\in (c,b)$ then $f(c)$ is a local maximum.
If $f'(x) < 0$ for $x \in (a,c)$ and $f'(x) > 0$ for $x\in (c,b)$ then $f(c)$ is a local minimum.
\textbf{Second derivative test:}
If $f'(c) = 0$ and $f''(c) < 0$ then $f$ has a local maximum at $x=c$.
If $f'(c) = 0$ and $f''(c) > 0$ then $f$ has a local minimum at $x=c$.
\subsection{Indeterminacy and L'Hopital's Rule}
If the functions $f$ and $g$ are continuous at $x=a$ but $f(a)=g(a)=0$, then the limit $\lim_{x\to a}\frac{f(x)}{g(x)}$ cannot be directly evaluated.
Suppose that $f$ and $g$ are differentiable in a neighborhood of $a$, $f(a) = g(a) = 0$ and $g'(x) \ne 0$ except possibly at $a$.
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$
L'Hopital's rule can be applied multiple times in succession, e.g. if $\frac{f'(x)}{g'(x)}$ is still indeterminate.
\section{Integration}
If $f$ is continuous on $[a,b]$, then
$$F(x) = \int_a^x f(t) dt$$
$$\frac{d}{dx} F(x) = \frac{d}{dx}\int_a^x f(t) dt = f(x)$$
\subsection{Integration by Parts}
$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx$$
Decide which function is $u(x)$ with the LIATE rule in this order of priority:
\resizebox{\linewidth}{!}{%
\begin{tabular}{|l@{ }c@{ }l@{ }c@{ }l@{ }c@{ }l@{ }c@{ }l|}
\hline
logarithmic & \multirow{2}{*}{$>$} & inverse trigo.& \multirow{2}{*}{$>$} & algebraic & \multirow{2}{*}{$>$} & trigo. & \multirow{2}{*}{$>$} & exponential \\
functions & & functions & & functions & & functions & & functions \\\hline
\end{tabular}}
\subsection{Area Bounded by Two Curves}
Area between two curves $f_2(x)$ and $f_1(x)$ where $f_1(x) \leq f_2(x)$ in $[a,b]$ is given by
$$\int_a^b f_2(x) - f_1(x) dx$$
\subsection{Partial Fraction Decomposition}
$$\frac{px+q}{(ax+b)(cx+d)} = \frac{A}{ax+b} + \frac{B}{cx+d}$$
$$\frac{px^2+qx+r}{(ax+b)(cx+d)^2} = \frac{A}{ax+b} + \frac{B}{cx+d} + \frac{C}{(cx+d)^2}$$
$$\frac{px^2+qx+r}{(ax+b)(x^2+c^2)} = \frac{A}{ax+b} + \frac{Bx+C}{x^2+c^2}$$
% \subsection{Integrals}
% \begin{tabular}{@{}rlr@{}}
% $f(x)$ & $\int f(x) dx$ & \\
% $\frac{1}{x^2+a^2}$ & $\frac{1}{a}\arctan{\frac{x}{a}}$ & \\
% \end{tabular}
\section{Series}
\subsection{Arithmetic Series}
$$\sum_1^n a_n = \frac{n}{2}(a_1 + a_n)$$
\subsection{Geometric Series}
$$\sum_1^n ar^{n-1} = a\frac{1-r^n}{1-r}$$
If $|r| < 1$ then $ar^{n-1} \to 0$ as $n\to\infty$,
$$\sum_1^\infty ar^{n-1} = \frac{a}{1-r}$$
\subsection{Ratio Test}
For a series $\sum a_n$, let
$$\lim_{n\to\infty} \Big| \frac{a_{n+1}}{a_n}\Big| = \rho$$
Series is convergent if $\rho < 1$, divergent if $\rho > 1$ and no conclusion reached if $\rho = 1$.
\subsection{Power Series}
A power series has the form
$$\sum_{n=0}^\infty c_nx^n = c_0 + c_1x + c_2x^2 + ... + c_nx^n + ...$$
If the series is centered about $x=a$,
$$\sum_{n=0}^\infty c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + ... + c_n(x-a)^n + ...$$
\subsubsection{Standard Series}
\begin{align}
(1+x)^r & = 1+rx+\frac{r(r-1)}{2!}x^2 + ... + \frac{r(r-1)...(r-n+1)}{n!}x^n \nonumber \\
\frac{1}{1-x} & = 1 + x + x^2 + x^3 + ... + x^n + ... \text{for } |x| < 1 \nonumber \\
e^x & = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!} + ... + \frac{x^n}{n!} + ... \nonumber \\
\sin{x} & = x - \frac{x^3}{3!} + \frac{x^5}{5!} - ... + \frac{(-1)^nx^{2n+1}}{(2n+1)!} + ... \nonumber \\
\cos{x} & = 1-\frac{x^2}{2!} + \frac{x^4}{4!} - ... + \frac{(-1)^nx^{2n}}{(2r)!} \nonumber \\
\ln{(1+x)} & = x -\frac{x^2}{2} + \frac{x^3}{3} - ... + \frac{(-1)^{n+1}x^n}{n} + ... \nonumber
\end{align}
\subsection{Radius of Convergence}
$$\lim_{n\to\infty} \Big| \frac{u_{n+1}}{u_n} \Big| < 1$$
\subsection{Taylor Series}
$$\sum_{k=0}^\infty \frac{f^{(k)}(a)}{k!}(x-a)^k = f(a) + f'(a)(x-a) + ... + \frac{f^{(n)}(a)}{n!}(x-a)^n + ... $$
A Maclaurin series is a special case of a Taylor series where $a=0$, i.e. is a Taylor series expansion of a function about $0$
\subsubsection{Taylor's Theorem}
The $n$th order Taylor polynomial of $f$ at $a$ is given by
$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k = f(a) + f'(a)(x-a) + ... + \frac{f^{(n)}(a)}{n!}(x-a)^n$$
Then $f(x) = P_n(x) + R_n(x)$ where
$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$
for some $c$ between $a$ and $x$, where $R_n(x)$ is the remainder of order $n$ or the error term for the approximation of $f(x)$ by $P_n(x)$.
\section{Three Dimensional Space $\mathbb{R}^3$}
From now onwards, any math character in bold face is a vector, e.g. $\mathbf{i},\mathbf{u}$
\subsection{Dot Product}
$$\vec{v_1} \cdot \vec{v_2} =
\begin{pmatrix}
x_1 \\
y_1 \\
z_1 \\
\end{pmatrix}\cdot
\begin{pmatrix}
x_2 \\
y_2 \\
z_2 \\
\end{pmatrix}
= x_1x_2 + y_1y_2 + z_1z_2
= |\vec{v_1}|\: |\vec{v_2}| \cos{\theta} $$
\subsection{Unit Vector}
For some vector $\mathbf{u}$, its unit vector $\mathbf{\hat{u}} = \frac{1}{|\mathbf{u}|}\mathbf{u}$
\subsection{Cross Product}
$$\vec{v_1} \times \vec{v_2} =
\begin{pmatrix}
x_1 \\
y_1 \\
z_1 \\
\end{pmatrix}
\times
\begin{pmatrix}
x_2 \\
y_2 \\
z_2 \\
\end{pmatrix}
=\begin{pmatrix}
y_1z_2 - z_1y_2\\
-(x_1z_2 - z_1x_2)\\
x_1y_2 - y_1x_2\\
\end{pmatrix}
= |\vec{v_1}|\: |\vec{v_2}| \sin{\theta}$$
The distance from a point $P(x_0,y_0,z_0)$ to a plane $\Pi:ax+by+cz=d$ is given by
$$\text{dist}(P,\Pi) =\frac{|ax_0+by_0+cz_0-d|}{\sqrt{a^2+b^2+c^2}}=\text{proj}_{\mathbf{n}}\vec{OP}$$
\subsection{Space Curves}
For some curve with the vector equation $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$,
its arc length (if the curve is traversed once)
$$L = \int_a^b \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} dt = \int_a^b |\mathbf{r}'(t)|$$
\section{Fourier Series}
\subsection{Even or Odd?}
\begin{tabular}{rl}
$-f(x) = f(-x)$ & function $f$ is odd \\
$f(x) = f(-x)$ & function $f$ is even \\
\end{tabular}
\subsection{Computing the Fourier Series}
A periodic function of period $T$ can be represented by a Fourier series $f(x)$.
$$f(x) = a_0 + \sum_{n=1}^\infty (a_n\cos{nx}+b_n\sin{nx})$$
As the number of terms $n$ approaches infinity, the Fourier series begins to converge on the original function $f(x)$ more and more closely.
A perfect approximation of $f(x)$ can only occur when $n\to\infty$
Let $2L=T$.
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$
For the $m$th term where $m\in\mathbb{Z}^+$,
$$a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos{\frac{\pi mx}{L}} dx$$
$$b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin{\frac{\pi mx}{L}} dx$$
\textbf{If the function is even, we only need to consider cosine terms. Similarly, if the function is odd, we only need to consider sine terms.}
\subsection{Convergence of Fourier Series}
Suppose $f(x)$ is a piecewise smooth periodic function on the interval $-L\leq x\leq L$ with a Fourier series $f_s(x)$
$$f_s(x) = \left\{ \begin{array}{ll}
f(x) & \text{if } f \text{ is continuous at } x \\
\frac{1}{2}[f(x^-)+f(x^+)] & \text{if } f \text{ is not continuous at } x \\
\end{array}\right\}$$
This is useful when evaluating the sum of the Fourier coefficients $a_0$, $a_n$ and $b_n$ for some $x=k,k\in\mathbb{R}$ in $f(x)$
\section{Multivariate Functions}
\subsection{Partial Derivatives}
Let $z = f(x,y)$ be a function of two variables.
The \emph{partial derivative} of a function $f(x,y)$ w.r.t. $x$ is denoted by $f_x(x,y)$ or $\frac{\partial f}{\partial x}$ where the $y$ term is taken as a constant.
$$f_{xx} = (f_x)_x = \frac{\partial^2f}{\partial x^2} \text{ and } f_{xy} = (f_x)_y = \frac{\partial^2f}{\partial x\partial y}$$
$$f_{yy} = (f_y)_y = \frac{\partial^2f}{\partial y^2} \text{ and } f_{yx} = (f_y)_x = \frac{\partial^2f}{\partial x\partial y}$$
For most functions in practice, $f_{xy}(a,b) = f_{yx}(a,b)$.
\subsection{Chained Derivatives}
Suppose $z=f(x,y,z)$ where $x=x(t)$, $y=y(t)$ and $z=z(t)$. Thus, $z = f(x(t),y(t),z(t))$.
$$ \frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} +\frac{\partial f}{\partial z}\frac{dz}{dt}$$
Suppose $w=f(x,y,z)$ and $x=x(s,t)$, $y=y(s,t)$, and $z=z(s,t)$, giving $w=f(x(s,t),y(s,t),z(s,t))$
$$ \frac{\partial w}{\partial s} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial s}$$
$$\frac{\partial w}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial t}$$
\subsection{Directional Derivatives}
Note that $D_{\mathbf{i}} f(a,b) = f_x(a,b)$ and $D_{\mathbf{j}}f(a,b) = f_y(a,b)$ for the standard unit vectors of the $x$ and $y$ direction.
For some \underline{unit vector} $\mathbf{\hat{u}} = u_1\mathbf{i} + u_2\mathbf{j}$,
$$D_{\mathbf{u}}f(a,b) = f_x(a,b)\cdot u_1 + f_y(a,b)\cdot u_2 = \nabla f(a,b)\cdot \hat{\mathbf{u}}$$
The directional derivative $D_{\mathbf{u}}f(a,b)$ measures the change in the value $df$ of a function $f$ when moved a distance $dt$ from the point $(a,b)$ in the direction of the vector $\mathbf{u}$, where $df = D_{\mathbf{u}}f(a,b)\cdot dt$.
\subsection{Gradient Vector}
The gradient vector $\nabla f$ is given by
$$\nabla f = f_x\mathbf{i} + f_y\mathbf{j}$$
$$D_{\mathbf{u}}f(a,b) = \nabla f(a,b)\cdot \mathbf{u} = |\nabla f(a,b)|\cos{\theta}$$
The function $f$ increases most rapidly in the direction $\nabla f(a,b)$ and decreases most rapidly in the direction $-\nabla f(a,b)$.
\subsection{Maxima and Minima}
$f(x,y)$ has a local maximum at $(a,b)$ if $f(x,y) \leq f(a,b)$ for all points $(x,y)$ near $(a,b)$
$f(x,y)$ has a local minimum at $(a,b)$ if $f(x,y) \geq f(a,b)$ for all points $(x,y)$ near $(a,b)$
A function $f$ may have a local maximum or minimum at $(a,b)$ if: $f_x(a,b)=0$ and $f_y(a,b)=0$ \underline{or} $f_x(a,b)$ or $f_y(a,b)$ is not defined.
A point that satisfies either condition is known as a \emph{critical point}.
Suppose that $(a,b)$ is a critical point of $f(x,y)$. Let us define $D$ as
$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b)-[f_{xy}(a,b)]^2$$
\begin{tabular}{@{}rl@{}}
$D>0$ and $f_{xx}(a,b)>0$ & relative minimum at $(a,b)$\\
$D>0$ and $f_{xx}(a,b)<0$ & relative maximum at $(a,b)$\\
$D<0$ & saddle point at $(a,b)$\\
$D=0$ & no conclusion reached\\
\end{tabular}
\subsubsection{Saddle Point}
At a point $(a,b)$ of $f$ where $f_x(a,b) = 0$ and $f_y(a,b) = 0$, the point $(a,b)$ is known as a \emph{saddle point} of $f$ if there are some directions along which $f$ has a local maximum at $(a,b)$ and some directions along $f$ which has a local minimum at $(a,b)$.
\subsection{Lagrange Multiplier}
Suppose a function $f(x,y)$ subject to the constraint $g(x,y)$.
$$F(x,y,\lambda) = f(x,y) - \lambda g(x,y)$$
Solve for $F_x = 0$, $F_y = 0$ and $F_{\lambda} = 0$ to solve for $\lambda$.
\section{Multiple Integrals}
For $R = R_1 \cup R_2$ where $R_1$ and $R_2$ do not overlap except maybe at their boundary,
$$\iint_R f(x,y) dA = \iint_{R_1}f(x,y) dA + \iint_{R_2}f(x,y) dA$$
Suppose a rectangular region $R$ in the $xy$-plane where $a\leq x\leq b$ and $c\leq y\leq d$, then
$$\iint_R f(x,y) dA = \int_c^d\int_a^b f(x,y)\:dx\:dy = \int_a^b\int_c^d f(x,y)\:dy\:dx$$
\subsection{Type A Regions}
Bottom and top boundaries are curves given by $y=g_1(x)$ and $y=g_2(x)$ respectively, while left and right boundaries are $x=a$ and $x=b$ respectively.
$$R: g_1(x) \leq y \leq g_2(x),\:a\leq x\leq b$$
$$\iint_R f(x,y)\:dA = \int_a^b\int_{g_1(x)}^{g_2(x)}f(x,y)\:dy\:dx$$
\subsection{Type B Regions}
Left and right boundaries are curves given by $x=h_1(y)$ and $x=h_2(y)$ and bottom and top boundaries are straight lines $y=c$ and $y=d$ respectively.
$$R: c\leq y\leq d,\: h_1(y)\leq x\leq h_2(y)$$
$$\iint_R f(x,y)\:dA = \int_c^d\int_{h_1(y)}^{h_2(y)}f(x,y)\:dx\:dy$$
\subsection{Polar Coordinates}
Circular regions/sectors can be described with polar coordinates $r$ and $\theta$.
In general, a region $R$ in polar coordinates is described by
$$R: a\leq r\leq b,\: \alpha\leq\theta\leq\beta$$
When transforming from Cartesian to polar coordinates, $(x,y)$ is transformed to $(r,\theta)$ where
$$x=r\cos{\theta} \text{ and } y=r\sin{\theta}$$
and $dA$ is changed from $dx\:dy$ to $r\:dr\:d\theta$.
\subsection{Application of Double Integrals}
Suppose $D$ is a solid region under a surface defined by $f(x,y)$ over a plane region $R$.
$$\text{Volume of $D$} = \iint_Rf(x,y)\:dA$$
If $f$ has continuous first partial derivatives on a closed region $R$ of the $xy$-plane, then the area $S$ of that portion of the surface $z=f(x,y)$ that projects onto $R$ is given by
$$S = \iint_R\sqrt{\Big( \frac{\partial z}{\partial x}\Big)^2 + \Big( \frac{\partial z}{\partial y} \Big)^2 + 1}\:dA$$
\section{Line Integrals}
\subsection{Vector Fields}
A vector field on $R$ is a vector function $\mathbf{F}$ that assigns to each point a vector $\mathbf{F}(x,y,z)$.
$$\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$$
\subsection{Gradient Fields}
$$\nabla f(x,y,z) = f_x(x,y,z)\mathbf{i}+f_y(x,y,z)\mathbf{j} + f_z(x,y,z)\mathbf{k}$$
\subsection{Conservative Fields}
A vector field $\mathbf{F}$ is called a conservative vector field if it is the gradient of some scalar function $f$ such that $\mathbf{F} = \nabla f$, where $f$ is known as the potential function for $\mathbf{F}$.
Let $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ be a vector field on the $xy$-plane.
$$\text{If }\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}\text{ then $\mathbf{F}$ is conservative.}$$
Let $\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k}$ be a vector field on $xyz$-space.
$$\text{If } \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}, \text{ then $\mathbf{F}$ is conservative.} $$
If $\mathbf{F}$ is a conservative vector field, then $\int_C \mathbf{F}\cdot d\mathbf{r}$ is independent of the path taken.
If $\mathbf{F}$ is a conservative vector field, then $\oint_l \mathbf{F}\cdot d\mathbf{r} = 0$ for any \underline{closed} curve $l$, i.e. a curve with a terminal point that coincides with its initial point.
\subsection{Line Integrals of Scalar Functions}
$$\int_Cf(x,y,z)\:ds = \int_a^b f(x(t),y(t),z(t)) ||\mathbf{r}'(t)|| dt$$
$$=\int_a^b f(x(t),y(t),z(t))\sqrt{\Big(\frac{dx}{dt}\Big)^2 + \Big(\frac{dy}{dt}\Big)^2 + \Big(\frac{dz}{dt}\Big)^2}\: dt$$
\subsection{Line Integrals of Vector Fields}
$$\int_C\mathbf{F}\cdot\: d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t))\cdot \mathbf{r}'(t) dt$$
Geometrically, the line integral of $\mathbf{F}$ over $C$ is summing up the tangential components of $\mathbf{F}$ with respect to the arc length of $C$.
$$\int_{-C} f(x,y,z) ds = \int_C f(x,y,z) ds$$
The vector equation of a curve $C$ determines the orientation or direction of $C$.
For some $\mathbf{F}(x,y,z) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} + R(x,y)\mathbf{k}$,
$$ \int_C \mathbf{F}\cdot d\mathbf{r} = \int_C P dx + Q dy + R dz = \int_a^b P(\mathbf{r}(t))\frac{dx}{dt} + Q(\mathbf{r}(t))\frac{dy}{dt} dt$$
\subsection{Fundamental Theorem for Line Integrals}
If $f$ is a function of 2 or 3 variables whose gradient $\nabla f$ is continuous,
$$\int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b))-f(\mathbf{r}(a))$$
\subsection{Green's Theorem}
Let $D$ be a bounded region in the $xy$-plane and $\partial D$ the boundary of $D$. Suppose $P(x,y)$ and $Q(x,y)$ has continuous partial derivatives on $D$. Thus,
$$\oint_{\partial D} P dx + Q dy = \iint_D \Big( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \Big) dA$$
The orientation of $\partial D$ is such that, as one traverses along the boundary in this direction, the region $D$ is always on the left-hand side, i.e. the positive orientation of the boundary.
\section{Surface Integrals}
A parametric representation of a surface is given by
$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$$
\subsection{Standard Parametric Representation: Sphere}
For a sphere of radius $a$: $x^2+y^2+z^2=a^2$
$$\mathbf{r}(u,v) = (a\sin{u}\cos{v})\mathbf{i}+(a\sin{u}\sin{v})\mathbf{j} + (a\cos{u})\mathbf{k} $$
When $0\leq u\leq\pi$ and $0\leq v\leq 2\pi$, the representation gives a full sphere.
When $0\leq u\leq\frac{\pi}{2}$ and $0\leq v\leq 2\pi$, the representation gives the upper hemisphere.
\subsection{Standard Parametric Representation: Cylinder}
For a circular cylinder of radius $a$: $x^2+y^2=a^2$
$$\mathbf{r}(u,v) = (a\cos{u})\mathbf{i} + (a\sin{u})\mathbf{j} + v\mathbf{k}$$
Here, $u$ measures the angle from the positive $x$-axis about the $z$-axis while $v$ measures the height from the $xy$-plane along the cylinder.
The same applies for $x^2+z^2=a^2$ (cylinder about $y$-axis)
$$\mathbf{r}(u,v) = (a\cos{u})\mathbf{i} + v\mathbf{j} + (a\sin{u})\mathbf{k}$$
and $y^2+z^2=a^2$ (cylinder about $x$-axis)
$$\mathbf{r}(u,v) = v\mathbf{i} + (a\cos{u})\mathbf{j} + (a\sin{u})\mathbf{k}$$
\subsection{Tangent Planes}
Let $S$ be a surface given by the parametric representation
$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$$
For some position vector $\mathbf{r}_0 = \mathbf{r}(u_0,v_0)$ at a point $P_0$,
Fixing $v=v_0$ for a resulting curve $C_1$, the tangent vector of the space curve $C_1$ is given by
$$\mathbf{r}_u = \frac{\partial x}{\partial u}(u_0,v_0)\mathbf{i} + \frac{\partial y}{\partial u}(u_0,v_0)\mathbf{j} + \frac{\partial z}{\partial u}(u_0,v_0)\mathbf{k}$$
Fixing $u=u_0$ for a resulting curve $C_2$, the tangent vector of the space curve $C_2$ is given by
$$\mathbf{r}_v = \frac{\partial x}{\partial v}(u_0,v_0)\mathbf{i} + \frac{\partial y}{\partial v}(u_0,v_0)\mathbf{j} + \frac{\partial z}{\partial v}(u_0,v_0)\mathbf{k}$$
Both vectors $\mathbf{r}_u$ and $\mathbf{r}_v$ lie in the tangent plane to $S$ at $P_0$.
Thus, the cross product $\mathbf{r}_u \times \mathbf{r}_v$, assuming it is non-zero, provides a normal vector to the tangent plane to $S$ at $P_0$.
The equation of the tangent plane is described by
$$(\mathbf{r} - \mathbf{r}_0)\cdot(\mathbf{r}_u\times\mathbf{r}_v) = 0$$
\subsection{Surface Integrals of Scalar Functions}
Suppose $f(x,y,z)$ be a function defined on a surface $S$, where we can find $\mathbf{r}(u,v)=x(u,v)\mathbf{i}+y(u,v)\mathbf{j}+z(u,k)\mathbf{k}$ of $S$ over a domain $D$.
$$\iint_S f(x,y,z)\:dS = \iint_D f(\mathbf{r}(u,v))|\mathbf{r}_u\times\mathbf{r}_v|\:dA$$
\subsection{Surface Integrals of Vector Fields}
Let $\mathbf{F}$ be a continuous vector fields defined on a surface $S$ with a unit normal vector $\mathbf{n}$.
The surface integral of $\mathbf{F}$ over $S$ is given as
$$\iint_S \mathbf{F}\cdot\mathbf{n}\:dS \text{ or more simply } \iint_S \mathbf{F}\cdot\: dS$$
This integral is also known as the flux of $\mathbf{F}$ over $S$.
If $S$ is given by a parametric representation $\mathbf{r} = \mathbf{r}(u,v)$ with domain $D$,
$$\iint_S\mathbf{F}\cdot\:dS = \iint_D \mathbf{F}(\mathbf{r}(u,v))\cdot(\mathbf{r}_u\times\mathbf{r}_v)\:dA$$
\subsection{Orientation of Surfaces}
By convention, a curve has a positive orientation if it progresses counter-clockwise.
$$\iint_{-S}\mathbf{F}\cdot\:dS = -\iint_S \mathbf{F}\cdot\:dS$$
You can use the right-hand grip rule with the thumb pointed in the direction of the normal vector of $C$.
The curve has a positive orientation if your grip from knucle to fingertips progresses counter-clockwise, or negative if otherwise.
\subsection{Curl}
Let $\mathbf{F}=P\mathbf{i}+Q\mathbf{j}+R\mathbf{k}$ be a vector field in $xyz$-space.
$$\text{curl }{\mathbf{F}} = \Big(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\Big)\mathbf{i} + \Big(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\Big)\mathbf{j} + \Big(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\Big)\mathbf{k} $$
The curl of a vector field is also itself a vector field.
\subsection{Divergence}
$$\text{div }\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$$
The divergence of a vector field is a scalar function.
\subsection{Del Operator}
$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k} $$
The curl and divergence operations can be expressed in terms of the del operator using cross and dot product.
$$\text{curl }\mathbf{F} = \nabla\times\mathbf{F} \text{ and } \text{div }\mathbf{F} = \nabla\cdot\mathbf{F}$$
\subsection{Conservative Fields*}
Let $\mathbf{F}$ be a vector field in $xyz$-space.
If $\text{curl }\mathbf{F} = \mathbf{0}$, then $\mathbf{F}$ is a conservative field.
The converse is also true.
\subsection{Stokes' Theorem}
Let $S$ be an oriented, piecewise-smooth surface that is bounded by a closed, piecewise-smooth boundary curve $C$.
Let $\mathbf{F}$ be a vector field whose components have continuous partial derivatives on $S$. Then,
$$\oint_C\mathbf{F}\cdot\:d\mathbf{r} = \iint_S (\text{curl }\mathbf{F})\cdot\:dS$$
Stokes' Theorem can also be expressed as
$$ \oint_C P\:dx+Q\:dy+R\:dz = $$
$$ \iint_S \Big( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\Big)\,dy\,dz + \Big( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\Big)\,dz\,dx + \Big( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\Big)\,dx\,dy $$
The orientation of $C$ must be consistent with that of $S$.
\subsection{Gauss' Theorem}
Let $E$ be a solid region, $S$ be the boundary of $E$ given with outward orientation (where the normal vector on the surface always points away from $E$).
Let $\mathbf{F}$ be a vector field whose component functions have continuous partial derivatives in $E$. Then,
$$\iint_S \mathbf{F}\cdot\:d\mathbf{S} = \iiint_E \text{div }\mathbf{F}\:dV$$
\section{Trigonometric Identities}
\subsection{Pythagorean Identities}
$$\sin^2{u} + \cos^2{u} = 1$$
$$1+\tan^2{u} = \sec^2{u}$$
$$1+\cot^2{u} = \csc^2{u}$$
\subsection{Sum and Difference Formulae}
$$\sin(u\pm v) = \sin{u}\cos{v} \pm \cos{u}\sin{v}$$
$$\cos(u\pm v) = \cos{u}\cos{v} \mp \sin{u}\sin{v}$$
$$\tan(u\pm v) = \frac{\tan{u}\pm\tan{v}}{1\mp\tan{u}\tan{v}}$$
\subsection{Double Angle Formulae}
$$\sin{2u} = 2\sin{u}\cos{u}$$
$$\cos{2u} = \cos^2{u} - \sin^2{u} = 2\cos^2{u} - 1 = 1-2\sin^2{u}$$
$$\tan{2u} = \frac{2\tan{u}}{1-\tan^2{u}}$$
\subsection{Half Angle Identities}
$$\sin^2{u} = \frac{1-\cos{2u}}{2}$$
$$\cos^2{u} = \frac{1+\cos{2u}}{2}$$
$$\tan^2{u} = \frac{1-\cos{2u}}{1+\cos{2u}}$$
\subsection{Sum $\to$ Product Identities}
$$\sin{u} + \sin{v} = 2\sin{\frac{u+v}{2}}\cos{\frac{u-v}{2}}$$
$$\sin{u} - \sin{v} = 2\cos{\frac{u+v}{2}}\sin{\frac{u-v}{2}}$$
$$\cos{u} + \cos{v} = 2\cos{\frac{u+v}{2}}\cos{\frac{u-v}{2}}$$
$$\cos{u} - \cos{v} = -2\sin{\frac{u+v}{2}}\sin{\frac{u-v}{2}}$$
\subsection{Product $\to$ Sum Identities}
$$\sin{u}\sin{v} = \frac{1}{2} [\cos{(u-v)} - \cos{(u+v)}]$$
$$\cos{u}\cos{v} = \frac{1}{2} [\cos{(u-v)} + \cos{(u+v)}]$$
$$\sin{u}\cos{v} = \frac{1}{2} [\sin{(u+v)} + \sin{(u-v)}]$$
$$\cos{u}\sin{v} = \frac{1}{2} [\sin{(u+v)} - \sin{(u-v)}]$$
\subsection{Parity Identities}
$$\sin{(-u)} = -\sin{u}$$
$$\cos{(-u)} = \cos{u}$$
$$\tan{(-u)} = -\tan{u}$$
$$\cot{(-u)} = -\cot{u}$$
$$\csc{(-u)} = -\csc{u}$$
$$\sec{(-u)} = \sec{u}$$
{\hfill \texttt{[email protected]}}
{\hfill \texttt{For MA1505 taken in AY2015/16 Sem. 1 \\\hfill \LaTeX{} compiled \today.}}
\end{multicols}
\end{document}