forked from xtarx/StainGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FeatureSIM.m
441 lines (372 loc) · 17.4 KB
/
FeatureSIM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
function [FSIM, FSIMc] = FeatureSIM(strRefImgPath, strCompImgPath)
% ========================================================================
% FSIM Index with automatic downsampling, Version 1.0
% Copyright(c) 2010 Lin ZHANG, Lei Zhang, Xuanqin Mou and David Zhang
% All Rights Reserved.
%
%----------------------------------------------------------------------
%
% This is an implementation of the algorithm for calculating the
% Feature SIMilarity (FSIM) index between two images.
%
% Please refer to the following paper
%
% Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang,"FSIM: a feature similarity
% index for image qualtiy assessment", IEEE Transactions on Image Processing, vol. 20, no. 8, pp. 2378-2386, 2011.
%
%----------------------------------------------------------------------
%
%Input : (1) imageRef: the first image being compared
% (2) imageDis: the second image being compared
%
%Output: (1) FSIM: is the similarty score calculated using FSIM algorithm. FSIM
% only considers the luminance component of images. For colorful images,
% they will be converted to the grayscale at first.
% (2) FSIMc: is the similarity score calculated using FSIMc algorithm. FSIMc
% considers both the grayscale and the color information.
%Note: For grayscale images, the returned FSIM and FSIMc are the same.
%
%-----------------------------------------------------------------------
%
%Usage:
%Given 2 test images img1 and img2. For gray-scale images, their dynamic range should be 0-255.
%For colorful images, the dynamic range of each color channel should be 0-255.
%
%[FSIM, FSIMc] = FeatureSIM(img1, img2);
%-----------------------------------------------------------------------
imageRef = imread(strRefImgPath);
imageDis = imread(strCompImgPath);
[rows, cols] = size(imageRef(:,:,1));
I1 = ones(rows, cols);
I2 = ones(rows, cols);
Q1 = ones(rows, cols);
Q2 = ones(rows, cols);
if ndims(imageRef) == 3 %images are colorful
Y1 = 0.299 * double(imageRef(:,:,1)) + 0.587 * double(imageRef(:,:,2)) + 0.114 * double(imageRef(:,:,3));
Y2 = 0.299 * double(imageDis(:,:,1)) + 0.587 * double(imageDis(:,:,2)) + 0.114 * double(imageDis(:,:,3));
I1 = 0.596 * double(imageRef(:,:,1)) - 0.274 * double(imageRef(:,:,2)) - 0.322 * double(imageRef(:,:,3));
I2 = 0.596 * double(imageDis(:,:,1)) - 0.274 * double(imageDis(:,:,2)) - 0.322 * double(imageDis(:,:,3));
Q1 = 0.211 * double(imageRef(:,:,1)) - 0.523 * double(imageRef(:,:,2)) + 0.312 * double(imageRef(:,:,3));
Q2 = 0.211 * double(imageDis(:,:,1)) - 0.523 * double(imageDis(:,:,2)) + 0.312 * double(imageDis(:,:,3));
else %images are grayscale
Y1 = imageRef;
Y2 = imageDis;
end
Y1 = double(Y1);
Y2 = double(Y2);
%%%%%%%%%%%%%%%%%%%%%%%%%
% Downsample the image
%%%%%%%%%%%%%%%%%%%%%%%%%
minDimension = min(rows,cols);
F = max(1,round(minDimension / 256));
aveKernel = fspecial('average',F);
aveI1 = conv2(I1, aveKernel,'same');
aveI2 = conv2(I2, aveKernel,'same');
I1 = aveI1(1:F:rows,1:F:cols);
I2 = aveI2(1:F:rows,1:F:cols);
aveQ1 = conv2(Q1, aveKernel,'same');
aveQ2 = conv2(Q2, aveKernel,'same');
Q1 = aveQ1(1:F:rows,1:F:cols);
Q2 = aveQ2(1:F:rows,1:F:cols);
aveY1 = conv2(Y1, aveKernel,'same');
aveY2 = conv2(Y2, aveKernel,'same');
Y1 = aveY1(1:F:rows,1:F:cols);
Y2 = aveY2(1:F:rows,1:F:cols);
%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate the phase congruency maps
%%%%%%%%%%%%%%%%%%%%%%%%%
PC1 = phasecong2(Y1);
PC2 = phasecong2(Y2);
%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate the gradient map
%%%%%%%%%%%%%%%%%%%%%%%%%
dx = [3 0 -3; 10 0 -10; 3 0 -3]/16;
dy = [3 10 3; 0 0 0; -3 -10 -3]/16;
IxY1 = conv2(Y1, dx, 'same');
IyY1 = conv2(Y1, dy, 'same');
gradientMap1 = sqrt(IxY1.^2 + IyY1.^2);
IxY2 = conv2(Y2, dx, 'same');
IyY2 = conv2(Y2, dy, 'same');
gradientMap2 = sqrt(IxY2.^2 + IyY2.^2);
%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate the FSIM
%%%%%%%%%%%%%%%%%%%%%%%%%
T1 = 0.85; %fixed
T2 = 160; %fixed
PCSimMatrix = (2 * PC1 .* PC2 + T1) ./ (PC1.^2 + PC2.^2 + T1);
gradientSimMatrix = (2*gradientMap1.*gradientMap2 + T2) ./(gradientMap1.^2 + gradientMap2.^2 + T2);
PCm = max(PC1, PC2);
% SimMatrix = gradientSimMatrix .* PCSimMatrix .* PCm;
% FSIM = sum(sum(SimMatrix)) / sum(sum(PCm));
FSIM = 0.0
%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate the FSIMc
%%%%%%%%%%%%%%%%%%%%%%%%%
T3 = 200;
T4 = 200;
ISimMatrix = (2 * I1 .* I2 + T3) ./ (I1.^2 + I2.^2 + T3);
QSimMatrix = (2 * Q1 .* Q2 + T4) ./ (Q1.^2 + Q2.^2 + T4);
lambda = 0.03;
SimMatrixC = gradientSimMatrix .* PCSimMatrix .* real((ISimMatrix .* QSimMatrix) .^ lambda) .* PCm;
FSIMc = sum(sum(SimMatrixC)) / sum(sum(PCm));
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ResultPC]=phasecong2(im)
% ========================================================================
% Copyright (c) 1996-2009 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% The software is provided "as is", without warranty of any kind.
% References:
%
% Peter Kovesi, "Image Features From Phase Congruency". Videre: A
% Journal of Computer Vision Research. MIT Press. Volume 1, Number 3,
% Summer 1999 http://mitpress.mit.edu/e-journals/Videre/001/v13.html
nscale = 4; % Number of wavelet scales.
norient = 4; % Number of filter orientations.
minWaveLength = 6; % Wavelength of smallest scale filter.
mult = 2; % Scaling factor between successive filters.
sigmaOnf = 0.55; % Ratio of the standard deviation of the
% Gaussian describing the log Gabor filter's
% transfer function in the frequency domain
% to the filter center frequency.
dThetaOnSigma = 1.2; % Ratio of angular interval between filter orientations
% and the standard deviation of the angular Gaussian
% function used to construct filters in the
% freq. plane.
k = 2.0; % No of standard deviations of the noise
% energy beyond the mean at which we set the
% noise threshold point.
% below which phase congruency values get
% penalized.
epsilon = .0001; % Used to prevent division by zero.
thetaSigma = pi/norient/dThetaOnSigma; % Calculate the standard deviation of the
% angular Gaussian function used to
% construct filters in the freq. plane.
[rows,cols] = size(im);
imagefft = fft2(im); % Fourier transform of image
zero = zeros(rows,cols);
EO = cell(nscale, norient); % Array of convolution results.
estMeanE2n = [];
ifftFilterArray = cell(1,nscale); % Array of inverse FFTs of filters
% Pre-compute some stuff to speed up filter construction
% Set up X and Y matrices with ranges normalised to +/- 0.5
% The following code adjusts things appropriately for odd and even values
% of rows and columns.
if mod(cols,2)
xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1);
else
xrange = [-cols/2:(cols/2-1)]/cols;
end
if mod(rows,2)
yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1);
else
yrange = [-rows/2:(rows/2-1)]/rows;
end
[x,y] = meshgrid(xrange, yrange);
radius = sqrt(x.^2 + y.^2); % Matrix values contain *normalised* radius from centre.
theta = atan2(-y,x); % Matrix values contain polar angle.
% (note -ve y is used to give +ve
% anti-clockwise angles)
radius = ifftshift(radius); % Quadrant shift radius and theta so that filters
theta = ifftshift(theta); % are constructed with 0 frequency at the corners.
radius(1,1) = 1; % Get rid of the 0 radius value at the 0
% frequency point (now at top-left corner)
% so that taking the log of the radius will
% not cause trouble.
sintheta = sin(theta);
costheta = cos(theta);
clear x; clear y; clear theta; % save a little memory
% Filters are constructed in terms of two components.
% 1) The radial component, which controls the frequency band that the filter
% responds to
% 2) The angular component, which controls the orientation that the filter
% responds to.
% The two components are multiplied together to construct the overall filter.
% Construct the radial filter components...
% First construct a low-pass filter that is as large as possible, yet falls
% away to zero at the boundaries. All log Gabor filters are multiplied by
% this to ensure no extra frequencies at the 'corners' of the FFT are
% incorporated as this seems to upset the normalisation process when
% calculating phase congrunecy.
lp = lowpassfilter([rows,cols],.45,15); % Radius .45, 'sharpness' 15
logGabor = cell(1,nscale);
for s = 1:nscale
wavelength = minWaveLength*mult^(s-1);
fo = 1.0/wavelength; % Centre frequency of filter.
logGabor{s} = exp((-(log(radius/fo)).^2) / (2 * log(sigmaOnf)^2));
logGabor{s} = logGabor{s}.*lp; % Apply low-pass filter
logGabor{s}(1,1) = 0; % Set the value at the 0 frequency point of the filter
% back to zero (undo the radius fudge).
end
% Then construct the angular filter components...
spread = cell(1,norient);
for o = 1:norient
angl = (o-1)*pi/norient; % Filter angle.
% For each point in the filter matrix calculate the angular distance from
% the specified filter orientation. To overcome the angular wrap-around
% problem sine difference and cosine difference values are first computed
% and then the atan2 function is used to determine angular distance.
ds = sintheta * cos(angl) - costheta * sin(angl); % Difference in sine.
dc = costheta * cos(angl) + sintheta * sin(angl); % Difference in cosine.
dtheta = abs(atan2(ds,dc)); % Absolute angular distance.
spread{o} = exp((-dtheta.^2) / (2 * thetaSigma^2)); % Calculate the
% angular filter component.
end
% The main loop...
EnergyAll(rows,cols) = 0;
AnAll(rows,cols) = 0;
for o = 1:norient % For each orientation.
sumE_ThisOrient = zero; % Initialize accumulator matrices.
sumO_ThisOrient = zero;
sumAn_ThisOrient = zero;
Energy = zero;
for s = 1:nscale, % For each scale.
filter = logGabor{s} .* spread{o}; % Multiply radial and angular
% components to get the filter.
ifftFilt = real(ifft2(filter))*sqrt(rows*cols); % Note rescaling to match power
ifftFilterArray{s} = ifftFilt; % record ifft2 of filter
% Convolve image with even and odd filters returning the result in EO
EO{s,o} = ifft2(imagefft .* filter);
An = abs(EO{s,o}); % Amplitude of even & odd filter response.
sumAn_ThisOrient = sumAn_ThisOrient + An; % Sum of amplitude responses.
sumE_ThisOrient = sumE_ThisOrient + real(EO{s,o}); % Sum of even filter convolution results.
sumO_ThisOrient = sumO_ThisOrient + imag(EO{s,o}); % Sum of odd filter convolution results.
if s==1 % Record mean squared filter value at smallest
EM_n = sum(sum(filter.^2)); % scale. This is used for noise estimation.
maxAn = An; % Record the maximum An over all scales.
else
maxAn = max(maxAn, An);
end
end % ... and process the next scale
% Get weighted mean filter response vector, this gives the weighted mean
% phase angle.
XEnergy = sqrt(sumE_ThisOrient.^2 + sumO_ThisOrient.^2) + epsilon;
MeanE = sumE_ThisOrient ./ XEnergy;
MeanO = sumO_ThisOrient ./ XEnergy;
% Now calculate An(cos(phase_deviation) - | sin(phase_deviation)) | by
% using dot and cross products between the weighted mean filter response
% vector and the individual filter response vectors at each scale. This
% quantity is phase congruency multiplied by An, which we call energy.
for s = 1:nscale,
E = real(EO{s,o}); O = imag(EO{s,o}); % Extract even and odd
% convolution results.
Energy = Energy + E.*MeanE + O.*MeanO - abs(E.*MeanO - O.*MeanE);
end
% Compensate for noise
% We estimate the noise power from the energy squared response at the
% smallest scale. If the noise is Gaussian the energy squared will have a
% Chi-squared 2DOF pdf. We calculate the median energy squared response
% as this is a robust statistic. From this we estimate the mean.
% The estimate of noise power is obtained by dividing the mean squared
% energy value by the mean squared filter value
medianE2n = median(reshape(abs(EO{1,o}).^2,1,rows*cols));
meanE2n = -medianE2n/log(0.5);
estMeanE2n(o) = meanE2n;
noisePower = meanE2n/EM_n; % Estimate of noise power.
% Now estimate the total energy^2 due to noise
% Estimate for sum(An^2) + sum(Ai.*Aj.*(cphi.*cphj + sphi.*sphj))
EstSumAn2 = zero;
for s = 1:nscale
EstSumAn2 = EstSumAn2 + ifftFilterArray{s}.^2;
end
EstSumAiAj = zero;
for si = 1:(nscale-1)
for sj = (si+1):nscale
EstSumAiAj = EstSumAiAj + ifftFilterArray{si}.*ifftFilterArray{sj};
end
end
sumEstSumAn2 = sum(sum(EstSumAn2));
sumEstSumAiAj = sum(sum(EstSumAiAj));
EstNoiseEnergy2 = 2*noisePower*sumEstSumAn2 + 4*noisePower*sumEstSumAiAj;
tau = sqrt(EstNoiseEnergy2/2); % Rayleigh parameter
EstNoiseEnergy = tau*sqrt(pi/2); % Expected value of noise energy
EstNoiseEnergySigma = sqrt( (2-pi/2)*tau^2 );
T = EstNoiseEnergy + k*EstNoiseEnergySigma; % Noise threshold
% The estimated noise effect calculated above is only valid for the PC_1 measure.
% The PC_2 measure does not lend itself readily to the same analysis. However
% empirically it seems that the noise effect is overestimated roughly by a factor
% of 1.7 for the filter parameters used here.
T = T/1.7; % Empirical rescaling of the estimated noise effect to
% suit the PC_2 phase congruency measure
Energy = max(Energy - T, zero); % Apply noise threshold
EnergyAll = EnergyAll + Energy;
AnAll = AnAll + sumAn_ThisOrient;
end % For each orientation
ResultPC = EnergyAll ./ AnAll;
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LOWPASSFILTER - Constructs a low-pass butterworth filter.
%
% usage: f = lowpassfilter(sze, cutoff, n)
%
% where: sze is a two element vector specifying the size of filter
% to construct [rows cols].
% cutoff is the cutoff frequency of the filter 0 - 0.5
% n is the order of the filter, the higher n is the sharper
% the transition is. (n must be an integer >= 1).
% Note that n is doubled so that it is always an even integer.
%
% 1
% f = --------------------
% 2n
% 1.0 + (w/cutoff)
%
% The frequency origin of the returned filter is at the corners.
%
% See also: HIGHPASSFILTER, HIGHBOOSTFILTER, BANDPASSFILTER
%
% Copyright (c) 1999 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
% October 1999
% August 2005 - Fixed up frequency ranges for odd and even sized filters
% (previous code was a bit approximate)
function f = lowpassfilter(sze, cutoff, n)
if cutoff < 0 || cutoff > 0.5
error('cutoff frequency must be between 0 and 0.5');
end
if rem(n,1) ~= 0 || n < 1
error('n must be an integer >= 1');
end
if length(sze) == 1
rows = sze; cols = sze;
else
rows = sze(1); cols = sze(2);
end
% Set up X and Y matrices with ranges normalised to +/- 0.5
% The following code adjusts things appropriately for odd and even values
% of rows and columns.
if mod(cols,2)
xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1);
else
xrange = [-cols/2:(cols/2-1)]/cols;
end
if mod(rows,2)
yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1);
else
yrange = [-rows/2:(rows/2-1)]/rows;
end
[x,y] = meshgrid(xrange, yrange);
radius = sqrt(x.^2 + y.^2); % A matrix with every pixel = radius relative to centre.
f = ifftshift( 1 ./ (1.0 + (radius ./ cutoff).^(2*n)) ); % The filter
return;