-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_gen_2.py
490 lines (371 loc) · 17.9 KB
/
graph_gen_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
from __future__ import unicode_literals, print_function, division
from codecs import decode
from io import open
import unicodedata
import string
import re
import random
from nltk import text
import numpy as np
import os
import pickle
from numpy.core.fromnumeric import size
from torch.nn.init import calculate_gain
import time
import math
import sys
from torch.nn.utils.rnn import pack_padded_sequence
from intergcn import INTERGCN
from data_utils import ABSADatasetReader
from bucket_iterator import BucketIterator
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
from torchtext.data.metrics import bleu_score
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from config import config
from generate_dep_matrix import process_snli
device = config['device_gcn']
torch.cuda.empty_cache()
torch.manual_seed(5)
fname = './snli_sentences_all.txt'
fin = open(fname, 'r')
snli_data = fin.readlines()
dataset = config['dataset']
embed_dim = config['embed_dim']
hidden_size = config['hidden_size']
batch_size = config['batch_size']
learning_rate = config['learning_rate']
teacher_forcing_ratio = config['teacher_forcing_ratio']
dropout_rate = config['dropout_rate']
weight_decay = config['weight_decay']
total_epochs = config['total_epochs']
model_path = config['model_path']
save_every = config['save_every']
validate_every = config['validate_every']
input_cols = config['input_cols']
enc_num_layers = config['enc_num_layers']
dec_num_layers = config['dec_num_layers']
enc_bidirectional = config['enc_bidirectional']
clip_threshold = config['clip_threshold']
train_split = config['train_split']
test_split = config['test_split']
save_path = config['save_path']
fname_train, fname_val_test = train_test_split(snli_data, train_size = train_split, test_size=test_split, random_state=10)
fname_val, fname_test = train_test_split(fname_val_test, test_size=0.5, random_state=10)
# process_snli(fname_train, train_split)
# process_snli(fname_test, test_split)
absa_dataset = ABSADatasetReader(dataset, fname_train, fname_val, fname_test, train_split, embed_dim=embed_dim)
num_words = absa_dataset.tokenizer.idx
word2idx = absa_dataset.tokenizer.word2idx
idx2word = absa_dataset.tokenizer.idx2word
embed = nn.Embedding.from_pretrained(torch.tensor(absa_dataset.embedding_matrix, dtype=torch.float)).to(device)
embed_dropout = nn.Dropout(dropout_rate)
SOS_token = word2idx['SOS']
EOS_token = word2idx['EOS']
pad_token = word2idx['<pad>']
# print("SOS token: {} {} EOS: {}\n" .format(SOS_token, config['SOS_token'], EOS_token))
# print(type(SOS_token), type(config['SOS_token']))
print("num_words: {}\n" .format(num_words))
text_test = absa_dataset.text_test
text_val = absa_dataset.text_val
train_data_loader = BucketIterator(data=absa_dataset.train_data, batch_size=batch_size, shuffle=False)
val_data_loader = BucketIterator(data=absa_dataset.val_data, batch_size=config['batch_size'], shuffle=False)
test_data_loader = BucketIterator(data=absa_dataset.test_data, batch_size=batch_size, shuffle=False)
print("train set size: {} {}\n" .format(len(fname_train), len(absa_dataset.train_data)))
class Logger(object):
def __init__(self):
self.terminal = sys.stdout
self.log = open(config['logs_path_gcn'], "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
#this flush method is needed for python 3 compatibility.
#this handles the flush command by doing nothing.
#you might want to specify some extra behavior here.
pass
sys.stdout = Logger()
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size, batch_size, num_layers):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.input_size = input_size
self.batch_size = batch_size
self.num_layers = num_layers
# self.embedding = nn.Embedding(input_size, hidden_size)
# self.embedding = nn.Embedding.from_pretrained(torch.tensor(absa_dataset.embedding_matrix, dtype=torch.float))
self.gru = nn.GRU(input_size=input_size, hidden_size=hidden_size, num_layers=enc_num_layers, batch_first=True, bidirectional = enc_bidirectional)
# self.lstm = nn.LSTM(hidden_size, hidden_size, hidden_size)
def forward(self, input, input_len, hidden=None):
# output = torch.nn.utils.rnn.pack_padded_sequence(input, input_len, batch_first=True, enforce_sorted=False)
output = input
if hidden is None:
output, hidden = self.gru(output, None)
else:
output, hidden = self.gru(output, hidden)
# output = torch.nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
# output = output[0]
# print("post e: {}\n" .format(output.shape))
return output, hidden
class DecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
# self.embedding = nn.Embedding(output_size, hidden_size)
self.embedding = nn.Embedding.from_pretrained(torch.tensor(absa_dataset.embedding_matrix, dtype=torch.float))
self.gru = nn.GRU(input_size=3*hidden_size + 100, hidden_size=hidden_size, num_layers=dec_num_layers, batch_first=True, bidirectional=False)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=-1)
def forward(self, input, hidden=None):
output = F.relu(input)
# output = torch.nn.utils.rnn.pack_padded_sequence(output, text_len, batch_first=True, enforce_sorted=False)
# print("gru: {}\n" .format(self.gru))
# print("out: {}\n" .format(self.out))
# print("d output size pre gru: {}\n" .format(output.size()))
# print("d hidden: {} size: {}\n" .format(hidden, hidden.size()))
if hidden is None:
output, hidden = self.gru(output, None)
else:
output, hidden = self.gru(output, hidden)
# output = torch.nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
# output = output[0]
# print("d hidden size: {}\n" .format(hidden.size()))
# print("d output size: {}\n" .format(output.size()))
output = self.softmax(self.out(output))
# print("d last output size: {}\n" .format(output.size()))
return output, hidden
def calc_time(start):
now = time.time()
end = now - start
mins = math.floor(end / 60)
end -= mins*60
return end, mins
def get_pred_words(total_output):
decoded_words = []
for sentence in total_output:
preds = []
for word in sentence:
# if idx2word[word.item()] != '<pad>':
# print("word: {}\n" .format(word.item()))
preds.append(idx2word[word.item()])
# print("preds shape: {}\n" .format(len(preds)))
decoded_words.append(preds)
return decoded_words
def calc_bleu(candidate, reference):
new = []
for x in candidate:
temp = []
for word in x:
if word == 'EOS':
break
temp.append(word)
new.append(temp)
# print("candidate: ", new)
bleu_1 = bleu_score(new, reference, weights=[1, 0, 0, 0])
bleu_2 = bleu_score(new, reference, weights=[0.5, 0.5, 0, 0])
bleu_3 = bleu_score(new, reference, weights=[0.34, 0.33, 0.33, 0])
bleu_4 = bleu_score(new, reference, weights=[0.25, 0.25, 0.25, 0.25])
return bleu_1, bleu_2, bleu_3, bleu_4
def train(input_tensor, target_tensor, encoder, decoder, gcn, encoder_optimizer, decoder_optimizer, gcn_optimizer, criterion, num_batch):
# TODO: validation dataset after each epoch
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
gcn_optimizer.zero_grad()
loss = 0
gcn_output = gcn(encoder, input_tensor)
# gcn_output = torch.zeros((target_tensor.size(0), 1, 2*hidden_size), device=device)
# print("gcn_output: {} size: {}\n" .format(gcn_output, gcn_output.size()))
target_embed = embed(target_tensor)
target_length = target_tensor.size(1)
decoder_hidden = None
decoder_input = None
for i in range(target_length - 1):
if i == 0:
# decoder_input = torch.full(size = (target_tensor.size(0), 1), fill_value = SOS_token, device = device)
decoder_input = target_tensor.select(dim = 1, index = i).unsqueeze(dim = 1)
decoder_input = embed(decoder_input)
decoder_input = embed_dropout(decoder_input)
# print("dec ip size: {} dec ip: {}" .format(decoder_input.size(), decoder_input))
decoder_input = torch.cat((decoder_input, gcn_output), dim=2)
# print("dec ip {} size {}" .format(decoder_input, decoder_input.size()))
# ip = decoder_input.select(dim=1, index = i)
# for loss
tg = target_tensor.select(dim=1, index=i + 1)
# tg = tg.unsqueeze(dim=1)
# print("tg: {}" .format(tg.size()))
# print("tg {} size {} " .format(tg, tg.size()))
# for teacher forcing
tg_embed = target_embed.select(dim = 1, index = i + 1)
tg_embed = tg_embed.unsqueeze(dim=1)
# print("tg embed {} size {} " .format(tg_embed, tg_embed.size()))
decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
decoder_output = decoder_output.squeeze(dim=1)
# print("dec op size", decoder_output, decoder_output.size())
loss += criterion(decoder_output, tg)
# teacher forcing
decoder_input = tg_embed
loss.backward()
nn.utils.clip_grad_norm_(encoder.parameters(), clip_threshold)
nn.utils.clip_grad_norm_(decoder.parameters(), clip_threshold)
nn.utils.clip_grad_norm_(gcn.parameters(), clip_threshold)
encoder_optimizer.step()
decoder_optimizer.step()
gcn_optimizer.step()
return loss.item()
def evaluate(encoder, decoder, gcn, input_tensor, target_tensor):
with torch.no_grad():
total_output = torch.zeros((target_tensor.size(0), 1), device=device)
# total_output = torch.unsqueeze(total_output, dim = 1)
gcn_output = gcn(encoder, input_tensor)
target_length = target_tensor.size(1)
decoder_hidden = None
decoder_input = None
for i in range(target_length):
if i == 0:
# decoder_input = torch.full(size = (target_tensor.size(0), 1), fill_value = SOS_token, device = device)
decoder_input = target_tensor.select(dim = 1, index = i).unsqueeze(dim = 1)
decoder_input = embed(decoder_input)
decoder_input = embed_dropout(decoder_input)
else:
decoder_input = embed(decoder_input)
# print("dec ip size: {} dec ip: {}" .format(decoder_input.size(), decoder_input))
decoder_input = torch.cat((decoder_input, gcn_output), dim=2)
decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
# print("dec op size: {} dec op: {}" .format(decoder_output.size(), decoder_output))
topv, topi = decoder_output.data.topk(1)
# print("top i: {} size: {}" .format(topi, topi.size()))
topi = topi.squeeze(dim = -1).detach()
# print("top i: {} size: {}" .format(topi, topi.size()))
# decoder_input = decoder_input.type(torch.float)
total_output = torch.cat((total_output, topi), dim = 1)
decoder_input = topi
# print("dec ip eval", decoder_input.size())
total_output = total_output[:, 1:]
# print("total op size: {}" .format(total_output.size()))
return total_output
def evaluateTest(encoder, decoder, gcn, test_data_loader, val_data_loader, epoch, total_epochs):
candidate = []
reference = []
print("Calculating candidate...\n")
if epoch == total_epochs:
print("Using test loader\n")
data_loader = test_data_loader
for item in text_test:
reference.append([item])
else:
print("Using val loader\n")
data_loader = val_data_loader
for item in text_val:
reference.append([item])
for batch in data_loader:
graph = process_snli(batch['context'])
graph = BucketIterator.pad_graph(graph, batch['max_len'])
input_tensor = [batch['text_indices'].to(device), graph.to(device)]
target_tensor = batch['text_indices'].to(device)
total_output = evaluate(encoder, decoder, gcn, input_tensor, target_tensor)
output_sentences = get_pred_words(total_output)
candidate.append(output_sentences)
candidate = [val for sublist in candidate for val in sublist]
with open(dataset+'_gcn_candidate.pkl', 'wb') as file:
pickle.dump(candidate, file)
print("pickled candidate corpus!!!!")
print("Reference size: {}\n" .format(len(reference)))
print("candidate size: {}\n" .format(len(candidate)))
# print("candidate: {}\n" .format(candidate))
# print("\n*******\nreference: {}\n" .format(reference_corpus))
bleu_1, bleu_2, bleu_3, bleu_4 = calc_bleu(candidate, reference)
return bleu_1, bleu_2, bleu_3, bleu_4
def trainIters(encoder, decoder, gcn, encoder_optimizer, decoder_optimizer, gcn_optimizer, train_data_loader, current_epochs, total_epochs):
start = time.time()
print("start time: {}\n" .format(start))
loss_total = 0 # Reset every print_every
criterion = nn.CrossEntropyLoss(ignore_index=pad_token)
epochs = current_epochs
for epoch in range(epochs, total_epochs + 1):
# print("\n\n!!!!!!!!!!!!! IN EPOCH {} !!!!!!!!!\n\n" .format(epoch))
for num_batch, batch in enumerate(train_data_loader):
# input_tensor = [batch[col].to(device) for col in input_cols]
graph = process_snli(batch['context'])
graph = BucketIterator.pad_graph(graph, batch['max_len'])
input_tensor = [batch['text_indices'].to(device), graph.to(device)]
target_tensor = batch['text_indices'].to(device)
# for item in batch['text_indices']:
# print(item)
loss = train(input_tensor, target_tensor, encoder, decoder, gcn, encoder_optimizer, decoder_optimizer, gcn_optimizer, criterion, num_batch)
loss_total += loss
if epoch % save_every == 0:
torch.save({
'epoch': epoch,
'enc_model_state_dict': encoder.state_dict(),
'dec_model_state_dict': decoder.state_dict(),
'gcn_model_state_dict': gcn.state_dict(),
'enc_optimizer_state_dict': encoder_optimizer.state_dict(),
'dec_optimizer_state_dict': decoder_optimizer.state_dict(),
'gcn_optimizer_state_dict': gcn_optimizer.state_dict(),
'loss': loss_total / len(fname_train)
}, save_path + '_' + str(epoch))
print("Saving model at epoch: {}" .format(epoch))
if epoch % validate_every == 0:
encoder.eval()
gcn.eval()
decoder.eval()
bleu_1, bleu_2, bleu_3, bleu_4 = evaluateTest(encoder, decoder, gcn, test_data_loader, val_data_loader, epoch, total_epochs)
print("bleu_1: {}, bleu_2: {}, bleu_3: {}, bleu_4: {}\n" .format(bleu_1, bleu_2, bleu_3, bleu_4))
with open(dataset+'_gcn_candidate.pkl', 'rb') as f:
candidate = pickle.load(f)
choice_indices = np.random.choice(len(candidate), 10, replace=False)
x = [candidate[i] for i in choice_indices]
y = [text_val[i] for i in choice_indices]
for i, j in zip(x, y):
print("Prediction: {}\nGround Truth: {}\n\n" .format(i, j))
encoder.train()
gcn.train()
decoder.train()
loss_avg = loss_total / len(fname_train)
loss_total = 0
end, mins = calc_time(start)
print("Epochs: {}, loss avg: {}, mins: {}, secs: {}\n" .format(epoch, loss_avg, mins, end))
# **************************************************************************************************************
# **************************************************************************************************************
# TODO: test get_pred_words
encoder = EncoderRNN(embed_dim, hidden_size, batch_size, enc_num_layers).to(device)
gcn = INTERGCN(absa_dataset.embedding_matrix, hidden_size).to(device)
decoder = DecoderRNN(hidden_size, num_words).to(device)
# l2 loss
encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate)
gcn_optimizer = optim.Adam(gcn.parameters(), lr=learning_rate)
epoch = 0
# checkpoint = torch.load(config['model_path'])
# encoder.load_state_dict(checkpoint['enc_model_state_dict'])
# decoder.load_state_dict(checkpoint['dec_model_state_dict'])
# gcn.load_state_dict(checkpoint['gcn_model_state_dict'])
# encoder_optimizer.load_state_dict(checkpoint['enc_optimizer_state_dict'])
# decoder_optimizer.load_state_dict(checkpoint['dec_optimizer_state_dict'])
# gcn_optimizer.load_state_dict(checkpoint['gcn_optimizer_state_dict'])
# epoch = checkpoint['epoch']
# prev_loss = checkpoint['loss']
# print("prev loss: {}\n" .format(prev_loss))
# print("starting from epoch: {}\n" .format(epoch + 1))
encoder.train()
decoder.train()
gcn.train()
trainIters(encoder, decoder, gcn, encoder_optimizer, decoder_optimizer, gcn_optimizer, train_data_loader, current_epochs = epoch + 1, total_epochs = total_epochs)
print("starting evaluation...\n")
encoder.eval()
decoder.eval()
gcn.eval()
print("word2idx: {}\n" .format(word2idx['a']))
# bleu_1, bleu_2, bleu_3, bleu_4 = evaluateTest(encoder, decoder, gcn, test_data_loader)
# print("bleu_1: {}, bleu_2: {}, bleu_3: {}, bleu_4: {}\n" .format(bleu_1, bleu_2, bleu_3, bleu_4))
# with open(dataset+'_gcn_candidate.pkl', 'rb') as f:
# candidate = pickle.load(f)
# count = 0
# for x, y in zip(candidate, text_test):
# print("Prediction: {}\nGround Truth: {}\n\n" .format(x, y))
# if count == 10:
# break
# count += 1