-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathranking.py
38 lines (35 loc) · 1.25 KB
/
ranking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import pandas as pd
import pickle
import numpy as np
from scipy.stats import percentileofscore
class Ranking:
def __init__(self, ranks, filters = ['influence', 'moiScore', 'topic_relevance']):
self.filters = filters
self.dataframe = pd.DataFrame(ranks)
for filter in self.filters:
self.dataframe = self.normalize(self.dataframe, filter)
@staticmethod
def normalize(df, column):
max_vals = {
'influence': 1080,
'moiScore': 0.05,
'topic_relevance': 0.8
}
df = pd.DataFrame(df)
max = max_vals[column]
min = 0
print("Max", df[column].max())
if max == 0:
df[column] = 0
else:
df[column] = (df[column] - min) / (max - min)
return df
def rank(self, weightages):
rank = []
self.dataframe['rank'] = 0
for filter in self.filters:
self.dataframe['rank'] += self.dataframe[filter] * weightages[filter]
self.dataframe = self.dataframe.sort_values(['rank'], ascending=0)
dataFrameList = self.dataframe['rank'].tolist()
self.percentileOfLast = percentileofscore(dataFrameList, dataFrameList[4])
print("last percentile", self.percentileOfLast)