Skip to content

Implement mode == "overwrite" in to_deltalake #34

Open
@j-bennet

Description

@j-bennet

The first version of writing into deltalake did not implement overwriting an existing table. Currently, this is raising a ValueError (should actually raise a NotImplementedError):

import pandas as pd
import numpy as np
import dask.dataframe as dd
from dask_deltatable.write import to_deltalake


if __name__ == "__main__":
    df = pd.DataFrame({
        "i1": np.random.randint(1, 10000, size=100),
        "f1": np.random.random(100),
        "s1": np.random.choice(["Apple", "Banana", "Watermelon", "Mango"], size=100),
    })
    ddf = dd.from_pandas(df, npartitions=10)
    to_deltalake("t1_data", ddf, mode="overwrite").compute()

Raises:

Traceback (most recent call last):
  File "/Users/jbennet/src/dask-deltatable/t1.py", line 14, in <module>
    to_deltalake("t1_data", ddf, mode="overwrite").compute()
  File "/Users/jbennet/src/dask-deltatable/dask_deltatable/write.py", line 82, in to_deltalake
    raise ValueError(
ValueError: Schema of data does not match table schema
Table schema:
None
Data Schema:
i1: int64
f1: double
s1: string

Original PR: #29.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions