After a scan
you can leverage the classified columns to select all columns of specified classes from multiple tables.
dx.select_by_classes(from_tables="*.*.*", by_classes=["dx_iso_date", "dx_email"], min_score=None)
You can apply further transformations to build your summary tables. Eg. Count the occurrence of each IP address per day across multiple tables and columns
df = (dx.select_by_classes(from_tables="*.*.*", by_classes=["dx_iso_date", "dx_ip_v4"])
.groupby(["table_catalog", "table_schema", "table_name", "classified_columns.dx_iso_date.column", "classified_columns.dx_iso_date.value", "classified_columns.dx_ip_v4.column"])
.agg(func.count("classified_columns.dx_ip_v4.value").alias("count"))
)