-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-ilp_sol.Rmd
22 lines (18 loc) · 906 Bytes
/
1-ilp_sol.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
## Solutions {-}
1. An optimal solution to the modified problem is
given by \(x^* = \begin{bmatrix} 1\\1\\1 \end{bmatrix}\).
2. An optimal solution is
\(\begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 2 \\ 0\end{bmatrix}\).
Thus, the optimal value is \(6\).
3.
a. Since \(\vec{d} \geq \vec{0}\) and \(\mm{A}\vec{x} \geq \vec{b}\),
we have \(\vec{d}^T\mm{A} \vec{x} \geq \vec{d}^\T\vec{b}\).
If \(\vec{d}^\T\vec{b}\) is an integer, the result follows immediately.
Otherwise, note that \(\vec{d}^\T\mm{A} \in \ZZ^n\)
and \(\vec{x}\in \ZZ^n\) imply
that \(\vec{d}^T\mm{A} \vec{x}\) is an integer.
Thus, \(\vec{d}^T\mm{A} \vec{x}\) must be greater than or equal to
the least integer greater than \(\vec{d}^\T\vec{b}\).
b. Take \(\vec{d} = \begin{bmatrix} \frac{1}{9} \\
0 \\ \frac{1}{9} \end{bmatrix}\) and apply
the result in the previous part.