-
Notifications
You must be signed in to change notification settings - Fork 11
/
eval.py
400 lines (371 loc) · 17.7 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
"""This file defines the evaluation process of Point-GNN object detection."""
import os
import time
import argparse
import numpy as np
import tensorflow as tf
from dataset.kitti_dataset import KittiDataset
from models.graph_gen import get_graph_generate_fn
from models.models import get_model
from models.box_encoding import get_box_decoding_fn, get_box_encoding_fn, \
get_encoding_len
from models import preprocess
from util.config_util import load_config, load_train_config
from util.summary_util import write_summary_scale
parser = argparse.ArgumentParser(description='Repeated evaluation of PointGNN.')
parser.add_argument('eval_config_path', type=str,
help='Path to train_config')
parser.add_argument('--dataset_root_dir', type=str, default='../dataset/kitti/',
help='Path to KITTI dataset. Default="../dataset/kitti/"')
parser.add_argument('--dataset_split_file', type=str,
default='',
help='Path to KITTI dataset split file.'
'Default="DATASET_ROOT_DIR/3DOP_splits'
'/eval_config["eval_dataset"]"')
args = parser.parse_args()
eval_config = load_train_config(args.eval_config_path)
DATASET_DIR = args.dataset_root_dir
if args.dataset_split_file == '':
DATASET_SPLIT_FILE = os.path.join(DATASET_DIR,
'./3DOP_splits/'+eval_config['eval_dataset'])
else:
DATASET_SPLIT_FILE = args.dataset_split_file
config_path = os.path.join(eval_config['train_dir'], eval_config['config_path'])
while not os.path.isfile(config_path):
print('No config file found in %s, waiting' % config_path)
time.sleep(eval_config['eval_every_second'])
config = load_config(config_path)
if 'eval' in config:
config = config['eval']
dataset = KittiDataset(
os.path.join(DATASET_DIR, 'image/training/image_2'),
os.path.join(DATASET_DIR, 'velodyne/training/velodyne/'),
os.path.join(DATASET_DIR, 'calib/training/calib/'),
os.path.join(DATASET_DIR, 'labels/training/label_2'),
DATASET_SPLIT_FILE,
num_classes=config['num_classes'])
NUM_CLASSES = dataset.num_classes
if 'NUM_TEST_SAMPLE' not in eval_config:
NUM_TEST_SAMPLE = dataset.num_files
else:
if eval_config['NUM_TEST_SAMPLE'] < 0:
NUM_TEST_SAMPLE = dataset.num_files
else:
NUM_TEST_SAMPLE = eval_config['NUM_TEST_SAMPLE']
print(NUM_TEST_SAMPLE)
BOX_ENCODING_LEN = get_encoding_len(config['box_encoding_method'])
box_encoding_fn = get_box_encoding_fn(config['box_encoding_method'])
box_decoding_fn = get_box_decoding_fn(config['box_encoding_method'])
aug_fn = preprocess.get_data_aug(eval_config['data_aug_configs'])
def fetch_data(frame_idx):
cam_rgb_points = dataset.get_cam_points_in_image_with_rgb(frame_idx,
config['downsample_by_voxel_size'])
box_label_list = dataset.get_label(frame_idx)
cam_rgb_points, box_label_list = aug_fn(cam_rgb_points, box_label_list)
graph_generate_fn= get_graph_generate_fn(config['graph_gen_method'])
(vertex_coord_list, keypoint_indices_list, edges_list) = graph_generate_fn(
cam_rgb_points.xyz, **config['graph_gen_kwargs'])
if config['input_features'] == 'irgb':
input_v = cam_rgb_points.attr
elif config['input_features'] == '0rgb':
input_v = np.hstack([np.zeros((cam_rgb_points.attr.shape[0], 1)),
cam_rgb_points.attr[:, 1:]])
elif config['input_features'] == '0000':
input_v = np.zeros_like(cam_rgb_points.attr)
elif config['input_features'] == 'i000':
input_v = np.hstack([cam_rgb_points.attr[:, [0]],
np.zeros((cam_rgb_points.attr.shape[0], 3))])
elif config['input_features'] == 'i':
input_v = cam_rgb_points.attr[:, [0]]
elif config['input_features'] == '0':
input_v = np.zeros((cam_rgb_points.attr.shape[0], 1))
last_layer_graph_level = config['model_kwargs'][
'layer_configs'][-1]['graph_level']
last_layer_points_xyz = vertex_coord_list[last_layer_graph_level+1]
if config['label_method'] == 'yaw':
(cls_labels, boxes_3d, valid_boxes, label_map) =\
dataset.assign_classaware_label_to_points(box_label_list,
last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0))
if config['label_method'] == 'Car':
cls_labels, boxes_3d, valid_boxes, label_map =\
dataset.assign_classaware_car_label_to_points(box_label_list,
last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0))
if config['label_method'] == 'Pedestrian_and_Cyclist':
cls_labels, boxes_3d, valid_boxes, label_map =\
dataset.assign_classaware_ped_and_cyc_label_to_points(
box_label_list,
last_layer_points_xyz, expend_factor=(1.0, 1.0, 1.0))
encoded_boxes = box_encoding_fn(
cls_labels, last_layer_points_xyz, boxes_3d, label_map)
# reducing memory usage by casting to 32bits
input_v = input_v.astype(np.float32)
vertex_coord_list = [p.astype(np.float32) for p in vertex_coord_list]
keypoint_indices_list = [e.astype(np.int32) for e in keypoint_indices_list]
edges_list = [e.astype(np.int32) for e in edges_list]
cls_labels = cls_labels.astype(np.int32)
encoded_boxes = encoded_boxes.astype(np.float32)
valid_boxes = valid_boxes.astype(np.float32)
return(input_v, vertex_coord_list, keypoint_indices_list, edges_list,
cls_labels, encoded_boxes, valid_boxes)
# model =======================================================================
if config['input_features'] == 'irgb':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 4])
elif config['input_features'] == 'rgb':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 3])
elif config['input_features'] == '0000':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 4])
elif config['input_features'] == 'i000':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 4])
elif config['input_features'] == 'i':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 1])
elif config['input_features'] == '0':
t_initial_vertex_features = tf.placeholder(
dtype=tf.float32, shape=[None, 1])
t_vertex_coord_list = [tf.placeholder(dtype=tf.float32, shape=[None, 3])]
for _ in range(len(config['graph_gen_kwargs']['level_configs'])):
t_vertex_coord_list.append(
tf.placeholder(dtype=tf.float32, shape=[None, 3]))
t_edges_list = []
for _ in range(len(config['graph_gen_kwargs']['level_configs'])):
t_edges_list.append(
tf.placeholder(dtype=tf.int32, shape=[None, 2]))
t_keypoint_indices_list = []
for _ in range(len(config['graph_gen_kwargs']['level_configs'])):
t_keypoint_indices_list.append(
tf.placeholder(dtype=tf.int32, shape=[None, 1]))
t_class_labels = tf.placeholder(dtype=tf.int32, shape=[None, 1])
t_encoded_gt_boxes = tf.placeholder(dtype=tf.float32,
shape=[None, 1, BOX_ENCODING_LEN])
t_valid_gt_boxes = tf.placeholder(dtype=tf.float32, shape=[None, 1, 1])
t_is_training = tf.placeholder(dtype=tf.bool, shape=[])
model = get_model(config['model_name'])(num_classes=NUM_CLASSES,
box_encoding_len=BOX_ENCODING_LEN, mode='eval', **config['model_kwargs'])
t_logits, t_pred_box = model.predict(
t_initial_vertex_features, t_vertex_coord_list, t_keypoint_indices_list,
t_edges_list,
t_is_training)
t_probs = model.postprocess(t_logits)
t_predictions = tf.argmax(t_probs, axis=1, output_type=tf.int32)
t_loss_dict = model.loss(t_logits, t_class_labels, t_pred_box,
t_encoded_gt_boxes, t_valid_gt_boxes, **config['loss'])
t_cls_loss = t_loss_dict['cls_loss']
t_loc_loss = t_loss_dict['loc_loss']
t_reg_loss = t_loss_dict['reg_loss']
t_classwise_loc_loss = t_loss_dict['classwise_loc_loss']
t_total_loss = t_cls_loss + t_loc_loss + t_reg_loss
t_classwise_loc_loss_update_ops = {}
for class_idx in range(NUM_CLASSES):
for bi in range(BOX_ENCODING_LEN):
classwise_loc_loss_ind =t_classwise_loc_loss[class_idx][bi]
t_mean_loss, t_mean_loss_op = tf.metrics.mean(
classwise_loc_loss_ind,
name=('loc_loss_cls_%d_box_%d'%(class_idx, bi)))
t_classwise_loc_loss_update_ops[
('loc_loss_cls_%d_box_%d'%(class_idx, bi))] = t_mean_loss_op
classwise_loc_loss =t_classwise_loc_loss[class_idx]
t_mean_loss, t_mean_loss_op = tf.metrics.mean(
classwise_loc_loss,
name=('loc_loss_cls_%d'%class_idx))
t_classwise_loc_loss_update_ops[
('loc_loss_cls_%d'%class_idx)] = t_mean_loss_op
# metrics
t_recall_update_ops = {}
for class_idx in range(NUM_CLASSES):
t_recall, t_recall_update_op = tf.metrics.recall(
tf.equal(t_class_labels, tf.constant(class_idx, tf.int32)),
tf.equal(t_predictions, tf.constant(class_idx, tf.int32)),
name=('recall_%d'%class_idx))
t_recall_update_ops[('recall_%d'%class_idx)] = t_recall_update_op
t_precision_update_ops = {}
for class_idx in range(NUM_CLASSES):
t_precision, t_precision_update_op = tf.metrics.precision(
tf.equal(t_class_labels, tf.constant(class_idx, tf.int32)),
tf.equal(t_predictions, tf.constant(class_idx, tf.int32)),
name=('precision_%d'%class_idx))
t_precision_update_ops[('precision_%d'%class_idx)] = t_precision_update_op
t_mAP_update_ops = {}
for class_idx in range(NUM_CLASSES):
t_mAP, t_mAP_update_op = tf.metrics.auc(
tf.equal(t_class_labels, tf.constant(class_idx, tf.int32)),
t_probs[:, class_idx],
num_thresholds=200,
curve='PR',
name=('mAP_%d'%class_idx),
summation_method='careful_interpolation')
t_mAP_update_ops[('mAP_%d'%class_idx)] = t_mAP_update_op
t_mean_cls_loss, t_mean_cls_loss_op = tf.metrics.mean(
t_cls_loss,
name='mean_cls_loss')
t_mean_loc_loss, t_mean_loc_loss_op = tf.metrics.mean(
t_loc_loss,
name='mean_loc_loss')
t_mean_reg_loss, t_mean_reg_loss_op = tf.metrics.mean(
t_reg_loss,
name='mean_reg_loss')
t_mean_total_loss, t_mean_total_loss_op = tf.metrics.mean(
t_total_loss,
name='mean_total_loss')
metrics_update_ops = {
'cls_loss': t_mean_cls_loss_op,
'loc_loss': t_mean_loc_loss_op,
'reg_loss': t_mean_reg_loss_op,
'total_loss': t_mean_total_loss_op,}
metrics_update_ops.update(t_recall_update_ops)
metrics_update_ops.update(t_precision_update_ops)
metrics_update_ops.update(t_mAP_update_ops)
metrics_update_ops.update(t_classwise_loc_loss_update_ops)
# optimizers ================================================================
global_step = tf.Variable(0, dtype=tf.int32, trainable=False)
fetches = {
'step': global_step,
'predictions': t_predictions,
'pred_box': t_pred_box
}
fetches.update(metrics_update_ops)
# preprocessing data ========================================================
class DataProvider(object):
"""This class provides input data to training.
It has option to load dataset in memory so that preprocessing does not
repeat every time.
Note, if there is randomness inside graph creation, samples should be
reloaded for the randomness to take effect.
"""
def __init__(self, fetch_data, load_dataset_to_mem=True,
load_dataset_every_N_time=1, capacity=1):
self._fetch_data = fetch_data
self._loaded_data_dic = {}
self._loaded_data_ctr_dic = {}
self._load_dataset_to_mem = load_dataset_to_mem
self._load_every_N_time = load_dataset_every_N_time
self._capacity = capacity
def provide(self, frame_idx):
extend_frame_idx = frame_idx+np.random.choice(
self._capacity)*NUM_TEST_SAMPLE
if self._load_dataset_to_mem:
if extend_frame_idx in self._loaded_data_ctr_dic:
ctr = self._loaded_data_ctr_dic[extend_frame_idx]
if ctr >= self._load_every_N_time:
del self._loaded_data_ctr_dic[extend_frame_idx]
del self._loaded_data_dic[extend_frame_idx]
if frame_idx not in self._loaded_data_dic:
self._loaded_data_dic[extend_frame_idx] = self._fetch_data(
frame_idx)
self._loaded_data_ctr_dic[extend_frame_idx] = 0
self._loaded_data_ctr_dic[extend_frame_idx] += 1
return self._loaded_data_dic[extend_frame_idx]
else:
return self._fetch_data(frame_idx)
data_provider = DataProvider(fetch_data, load_dataset_to_mem=False)
saver = tf.train.Saver()
graph = tf.get_default_graph()
if eval_config['gpu_memusage'] < 0:
gpu_options = tf.GPUOptions(allow_growth=True)
else:
gpu_options = tf.GPUOptions(
per_process_gpu_memory_fraction=eval_config['gpu_memusage'])
def eval_once(graph, gpu_options, saver, checkpoint_path):
"""Evaluate the model once. """
with tf.Session(graph=graph,
config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
sess.run(tf.variables_initializer(tf.global_variables()))
sess.run(tf.variables_initializer(tf.local_variables()))
print('Restore from checkpoint %s' % checkpoint_path)
saver.restore(sess, checkpoint_path)
previous_step = sess.run(global_step)
print('Global step = %d' % previous_step)
start_time = time.time()
for frame_idx in range(NUM_TEST_SAMPLE):
(input_v, vertex_coord_list, keypoint_indices_list, edges_list,
cls_labels, encoded_boxes, valid_boxes)\
= data_provider.provide(frame_idx)
feed_dict = {
t_initial_vertex_features: input_v,
t_class_labels: cls_labels,
t_encoded_gt_boxes: encoded_boxes,
t_valid_gt_boxes: valid_boxes,
t_is_training: config['eval_is_training'],
}
feed_dict.update(dict(zip(t_edges_list, edges_list)))
feed_dict.update(
dict(zip(t_keypoint_indices_list, keypoint_indices_list)))
feed_dict.update(dict(zip(t_vertex_coord_list, vertex_coord_list)))
results = sess.run(fetches, feed_dict=feed_dict)
if NUM_TEST_SAMPLE >= 10:
if (frame_idx + 1) % (NUM_TEST_SAMPLE // 10) == 0:
print('@frame %d' % frame_idx)
print('cls:%f, loc:%f, reg:%f, loss: %f'
% (results['cls_loss'], results['loc_loss'],
results['reg_loss'], results['total_loss']))
for class_idx in range(NUM_CLASSES):
print('Class_%d: recall=%f, prec=%f, mAP=%f, loc=%f'
% (class_idx,
results['recall_%d'%class_idx],
results['precision_%d'%class_idx],
results['mAP_%d'%class_idx],
results['loc_loss_cls_%d'%class_idx]))
print(' '+\
'x=%.4f y=%.4f z=%.4f l=%.4f h=%.4f w=%.4f y=%.4f'
%(
results['loc_loss_cls_%d_box_%d'%(class_idx, 0)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 1)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 2)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 3)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 4)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 5)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 6)]),
)
print('STEP: %d, time cost: %f'
% (results['step'], time.time()-start_time))
print('cls:%f, loc:%f, reg:%f, loss: %f'
% (results['cls_loss'], results['loc_loss'], results['reg_loss'],
results['total_loss']))
for class_idx in range(NUM_CLASSES):
print('Class_%d: recall=%f, prec=%f, mAP=%f, loc=%f'
% (class_idx,
results['recall_%d'%class_idx],
results['precision_%d'%class_idx],
results['mAP_%d'%class_idx],
results['loc_loss_cls_%d'%class_idx]))
print(" x=%.4f y=%.4f z=%.4f l=%.4f h=%.4f w=%.4f y=%.4f"
%(
results['loc_loss_cls_%d_box_%d'%(class_idx, 0)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 1)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 2)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 3)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 4)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 5)],
results['loc_loss_cls_%d_box_%d'%(class_idx, 6)]),
)
# add summaries ====================================================
for key in metrics_update_ops:
write_summary_scale(key, results[key], results['step'],
eval_config['eval_dir'])
return results['step']
def eval_repeat():
last_evaluated_model_path = None
while True:
previous_time = time.time()
model_path = tf.train.latest_checkpoint(eval_config['train_dir'])
if not model_path:
print('No checkpoint found in %s, wait for %f seconds'
% (eval_config['train_dir'], eval_config['eval_every_second']))
if last_evaluated_model_path == model_path:
print(
'Checkpoint %s has been evaluated already, wait for %f seconds'
% (model_path, eval_config['eval_every_second']))
else:
last_evaluated_model_path = model_path
current_step = eval_once(graph, gpu_options, saver, model_path)
if current_step >= eval_config['max_step']:
break
time_to_next_eval = (
previous_time + eval_config['eval_every_second'] - time.time())
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
if __name__ == '__main__':
eval_repeat()