-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhf_models.py
96 lines (72 loc) · 2.81 KB
/
hf_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
import builtins
import json
import numpy as np
import pandas as pd
from huggingface_hub import HfApi
from sklearn.feature_extraction import DictVectorizer
from sklearn.impute import SimpleImputer
from sklearn.cluster import KMeans
import umap
def get_non_builtin_attributes(obj):
# Get a list of all attributes (including built-ins) of the object
all_attrs = dir(obj)
# Filter out attributes that are in the built-ins module
non_builtin_attrs = [attr for attr in all_attrs if not hasattr(builtins, attr) and attr[:2] != '__']
return non_builtin_attrs
def ds_dict(ds, attrs):
ret = {}
for attr in attrs:
ret[attr] = getattr(ds, attr, "")
ret['id'] = ds.id
return ret
def clean_dates(lds):
for d in lds:
d['created_at'] = str(d['created_at'])
d['lastModified'] = str(d['created_at'])
d['last_modified'] = str(d['created_at'])
return lds
def generate_datasets(filename, num_results, num_clusters):
api = HfApi()
hfdatasets = api.list_models(limit=num_results)
dss = list(hfdatasets)
attrs = get_non_builtin_attributes(dss[0])
dssdicts = list(map(lambda ds: ds_dict(ds, attrs), dss))
cleandss = clean_dates(dssdicts)
vec = DictVectorizer()
embedded = vec.fit_transform(cleandss)
imp = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value=None)
imp.fit(embedded)
imputed = imp.transform(embedded)
mapper = umap.UMAP(metric='cosine', low_memory=True, n_components=3)
umapped = mapper.fit_transform(imputed)
clustering_model = KMeans(n_clusters=num_clusters)
clusters = clustering_model.fit(umapped).labels_
labeled = [[x[0], x[1], x[2], c, d] for x, d, c in zip(umapped, dssdicts, clusters)]
data = {
'point_id': [],
'x': [],
'y': [],
'z': [],
'w': [],
'additional_info': []
}
dataset_name = "hfdataset"
for u, point_id in zip(labeled, range(len(labeled))):
data['point_id'].append(u[4]['_id'])
data['x'].append(u[0])
data['y'].append(u[1])
data['z'].append(u[2])
data['w'].append(u[3])
data['additional_info'].append(json.dumps(u[4]))
df = pd.DataFrame(data)
df.to_parquet(filename)
def main():
parser = argparse.ArgumentParser(description="Generate a dataset of the metadata about models from Hugging Face.")
parser.add_argument('filename', type=str, help='Output Parquet filename')
parser.add_argument('--num-results', type=int, default=300, help='Number of results to fetch from Hugging Face')
parser.add_argument('--num-clusters', type=int, default=20, help='Number of clusters for the clustering model')
args = parser.parse_args()
generate_datasets(args.filename, args.num_results, args.num_clusters)
if __name__ == "__main__":
main()