-
Notifications
You must be signed in to change notification settings - Fork 19
/
setup.py
405 lines (339 loc) · 15.5 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""Download and pre-process SQuAD and GloVe.
Usage:
> source activate squad
> python setup.py
Pre-processing code adapted from:
> https://github.com/HKUST-KnowComp/R-Net/blob/master/prepro.py
Author:
Chris Chute ([email protected])
"""
import numpy as np
import os
import spacy
import ujson as json
import urllib.request
from args import get_setup_args
from codecs import open
from collections import Counter
from subprocess import run
from tqdm import tqdm
from zipfile import ZipFile
def download_url(url, output_path, show_progress=True):
""" Download anything from an URL """
class DownloadProgressBar(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
if show_progress:
# Download with a progress bar
with DownloadProgressBar(unit='B', unit_scale=True,
miniters=1, desc=url.split('/')[-1]) as t:
urllib.request.urlretrieve(url,
filename=output_path,
reporthook=t.update_to)
else:
# Simple download with no progress bar
urllib.request.urlretrieve(url, output_path)
def url_to_data_path(url):
""" Get the file output path in the ./data folder """
return os.path.join('./data/', url.split('/')[-1])
def download(args):
""" Download anything and unzip if it is ended with *.zip """
downloads = [
# Can add other downloads here (e.g., other word vectors)
('GloVe word vectors', args.glove_url),
]
for name, url in downloads:
output_path = url_to_data_path(url)
if not os.path.exists(output_path):
print(f'Downloading {name}...')
download_url(url, output_path)
if os.path.exists(output_path) and output_path.endswith('.zip'):
extracted_path = output_path.replace('.zip', '')
if not os.path.exists(extracted_path):
print(f'Unzipping {name}...')
with ZipFile(output_path, 'r') as zip_fh:
zip_fh.extractall(extracted_path)
print('Downloading spacy language model...')
run(['python', '-m', 'spacy', 'download', 'en'])
def word_tokenize(sent):
""" Get word token of a sentence """
doc = nlp(sent) # spacy language model
return [token.text for token in doc]
def convert_idx(text, tokens):
current = 0
spans = []
for token in tokens:
current = text.find(token, current)
if current < 0:
print(f"Token {token} cannot be found")
raise Exception()
spans.append((current, current + len(token)))
current += len(token)
return spans
def process_file(filename, data_type, word_counter, char_counter):
""" Process each dataset (train, dev, test) """
print(f"Pre-processing {data_type} examples...")
examples = []
eval_examples = {}
total = 0
with open(filename, "r") as fh:
source = json.load(fh)
for article in tqdm(source["data"]):
for para in article["paragraphs"]:
context = para["context"].replace(
"''", '" ').replace("``", '" ')
context_tokens = word_tokenize(context)
context_chars = [list(token) for token in context_tokens]
spans = convert_idx(context, context_tokens)
for token in context_tokens:
word_counter[token] += len(para["qas"])
for char in token:
char_counter[char] += len(para["qas"])
for qa in para["qas"]:
total += 1
ques = qa["question"].replace(
"''", '" ').replace("``", '" ')
ques_tokens = word_tokenize(ques)
ques_chars = [list(token) for token in ques_tokens]
for token in ques_tokens:
word_counter[token] += 1
for char in token:
char_counter[char] += 1
y1s, y2s = [], []
answer_texts = []
for answer in qa["answers"]:
answer_text = answer["text"]
answer_start = answer['answer_start']
answer_end = answer_start + len(answer_text)
answer_texts.append(answer_text)
answer_span = []
for idx, span in enumerate(spans):
if not (answer_end <= span[0] or answer_start >= span[1]):
answer_span.append(idx)
y1, y2 = answer_span[0], answer_span[-1]
y1s.append(y1)
y2s.append(y2)
example = {"context_tokens": context_tokens,
"context_chars": context_chars,
"ques_tokens": ques_tokens,
"ques_chars": ques_chars,
"y1s": y1s,
"y2s": y2s,
"id": total}
examples.append(example)
eval_examples[str(total)] = {"context": context,
"question": ques,
"spans": spans,
"answers": answer_texts,
"uuid": qa["id"]}
print(f"{len(examples)} questions in total")
return examples, eval_examples
def get_embedding(counter, data_type, limit=-1, emb_file=None, vec_size=None, num_vectors=None):
print(f"Pre-processing {data_type} vectors...")
embedding_dict = {}
filtered_elements = [k for k, v in counter.items() if v > limit]
if emb_file is not None:
assert vec_size is not None
with open(emb_file, "r", encoding="utf-8") as fh:
for line in tqdm(fh, total=num_vectors):
array = line.split()
word = "".join(array[0:-vec_size])
vector = list(map(float, array[-vec_size:]))
if word in counter and counter[word] > limit:
embedding_dict[word] = vector
print(f"{len(embedding_dict)} / {len(filtered_elements)} tokens have corresponding {data_type} embedding vector")
else:
assert vec_size is not None
for token in filtered_elements:
embedding_dict[token] = [np.random.normal(
scale=0.1) for _ in range(vec_size)]
print(f"{len(filtered_elements)} tokens have corresponding {data_type} embedding vector")
NULL = "--NULL--"
OOV = "--OOV--"
token2idx_dict = {token: idx for idx, token in enumerate(embedding_dict.keys(), 2)}
token2idx_dict[NULL] = 0
token2idx_dict[OOV] = 1
embedding_dict[NULL] = [0. for _ in range(vec_size)]
embedding_dict[OOV] = [0. for _ in range(vec_size)]
idx2emb_dict = {idx: embedding_dict[token]
for token, idx in token2idx_dict.items()}
emb_mat = [idx2emb_dict[idx] for idx in range(len(idx2emb_dict))]
return emb_mat, token2idx_dict
def convert_to_features(args, data, word2idx_dict, char2idx_dict, is_test): # unused
example = {}
context, question = data
context = context.replace("''", '" ').replace("``", '" ')
question = question.replace("''", '" ').replace("``", '" ')
example['context_tokens'] = word_tokenize(context)
example['ques_tokens'] = word_tokenize(question)
example['context_chars'] = [list(token) for token in example['context_tokens']]
example['ques_chars'] = [list(token) for token in example['ques_tokens']]
para_limit = args.test_para_limit if is_test else args.para_limit
ques_limit = args.test_ques_limit if is_test else args.ques_limit
char_limit = args.char_limit
def filter_func(example):
return len(example["context_tokens"]) > para_limit or \
len(example["ques_tokens"]) > ques_limit
if filter_func(example):
raise ValueError("Context/Questions lengths are over the limit")
context_idxs = np.zeros([para_limit], dtype=np.int32)
context_char_idxs = np.zeros([para_limit, char_limit], dtype=np.int32)
ques_idxs = np.zeros([ques_limit], dtype=np.int32)
ques_char_idxs = np.zeros([ques_limit, char_limit], dtype=np.int32)
def _get_word(word):
for each in (word, word.lower(), word.capitalize(), word.upper()):
if each in word2idx_dict:
return word2idx_dict[each]
return 1 # UNK
def _get_char(char):
if char in char2idx_dict:
return char2idx_dict[char]
return 1 # UNK
for i, token in enumerate(example["context_tokens"]):
context_idxs[i] = _get_word(token)
for i, token in enumerate(example["ques_tokens"]):
ques_idxs[i] = _get_word(token)
for i, token in enumerate(example["context_chars"]):
for j, char in enumerate(token):
if j == char_limit:
break
context_char_idxs[i, j] = _get_char(char)
for i, token in enumerate(example["ques_chars"]):
for j, char in enumerate(token):
if j == char_limit:
break
ques_char_idxs[i, j] = _get_char(char)
return context_idxs, context_char_idxs, ques_idxs, ques_char_idxs
def is_answerable(example):
""" Check if a paragraph-question pair has an answer (no answer happened in SQuAD 2.0) """
return len(example['y2s']) > 0 and len(example['y1s']) > 0
def build_features(args, examples, data_type, out_file, word2idx_dict, char2idx_dict, is_test=False):
""" Convert examples to numpy indices and then save as *.npz """
para_limit = args.test_para_limit if is_test else args.para_limit
ques_limit = args.test_ques_limit if is_test else args.ques_limit
ans_limit = args.ans_limit
char_limit = args.char_limit
def drop_example(ex, is_test_=False):
if is_test_:
drop = False
else:
drop = len(ex["context_tokens"]) > para_limit or \
len(ex["ques_tokens"]) > ques_limit or \
(is_answerable(ex) and
ex["y2s"][0] - ex["y1s"][0] > ans_limit)
return drop
print(f"Converting {data_type} examples to indices...")
total = 0
total_ = 0
meta = {}
context_idxs = []
context_char_idxs = []
ques_idxs = []
ques_char_idxs = []
y1s = []
y2s = []
ids = []
for n, example in tqdm(enumerate(examples)):
total_ += 1
if drop_example(example, is_test):
continue
total += 1
def _get_word(word):
for each in (word, word.lower(), word.capitalize(), word.upper()):
if each in word2idx_dict:
return word2idx_dict[each]
return 1
def _get_char(char):
if char in char2idx_dict:
return char2idx_dict[char]
return 1
context_idx = np.zeros([para_limit], dtype=np.int32)
context_char_idx = np.zeros([para_limit, char_limit], dtype=np.int32)
ques_idx = np.zeros([ques_limit], dtype=np.int32)
ques_char_idx = np.zeros([ques_limit, char_limit], dtype=np.int32)
for i, token in enumerate(example["context_tokens"]):
context_idx[i] = _get_word(token)
context_idxs.append(context_idx)
for i, token in enumerate(example["ques_tokens"]):
ques_idx[i] = _get_word(token)
ques_idxs.append(ques_idx)
for i, token in enumerate(example["context_chars"]):
for j, char in enumerate(token):
if j == char_limit:
break
context_char_idx[i, j] = _get_char(char)
context_char_idxs.append(context_char_idx)
for i, token in enumerate(example["ques_chars"]):
for j, char in enumerate(token):
if j == char_limit:
break
ques_char_idx[i, j] = _get_char(char)
ques_char_idxs.append(ques_char_idx)
if is_answerable(example):
start, end = example["y1s"][-1], example["y2s"][-1]
else:
start, end = -1, -1
y1s.append(start)
y2s.append(end)
ids.append(example["id"])
np.savez(out_file,
context_idxs=np.array(context_idxs),
context_char_idxs=np.array(context_char_idxs),
ques_idxs=np.array(ques_idxs),
ques_char_idxs=np.array(ques_char_idxs),
y1s=np.array(y1s),
y2s=np.array(y2s),
ids=np.array(ids))
print(f"Built {total} / {total_} instances of features in total")
meta["total"] = total
return meta
def save(filename, obj, message=None):
""" Save (dump) an object as a JSON file """
if message is not None:
print(f"Saving {message}...")
with open(filename, "w") as fh:
json.dump(obj, fh)
def pre_process(args):
""" The main data pre-processing script """
# Process training set and use it to decide on the word/character vocabularies
word_counter, char_counter = Counter(), Counter() # TODO: figure out why using Counter
train_examples, train_eval = process_file(args.train_file, "train", word_counter, char_counter)
word_emb_mat, word2idx_dict = get_embedding(
word_counter, 'word', emb_file=args.glove_file, vec_size=args.glove_dim, num_vectors=args.glove_num_vecs)
char_emb_mat, char2idx_dict = get_embedding(
char_counter, 'char', emb_file=None, vec_size=args.char_dim)
# Process dev and test sets
dev_examples, dev_eval = process_file(args.dev_file, "dev", word_counter, char_counter)
build_features(args, train_examples, "train", args.train_record_file, word2idx_dict, char2idx_dict)
dev_meta = build_features(args, dev_examples, "dev", args.dev_record_file, word2idx_dict, char2idx_dict)
if args.include_test_examples:
test_examples, test_eval = process_file(args.test_file, "test", word_counter, char_counter)
save(args.test_eval_file, test_eval, message="test eval")
test_meta = build_features(args, test_examples, "test",
args.test_record_file, word2idx_dict, char2idx_dict, is_test=True)
save(args.test_meta_file, test_meta, message="test meta")
save(args.word_emb_file, word_emb_mat, message="word embedding")
save(args.char_emb_file, char_emb_mat, message="char embedding")
save(args.train_eval_file, train_eval, message="train eval")
save(args.dev_eval_file, dev_eval, message="dev eval")
save(args.word2idx_file, word2idx_dict, message="word dictionary")
save(args.char2idx_file, char2idx_dict, message="char dictionary")
save(args.dev_meta_file, dev_meta, message="dev meta")
if __name__ == '__main__':
# Get command-line args
args_ = get_setup_args()
# Download resources
download(args_)
# Import spacy language model
nlp = spacy.blank("en")
# Preprocess dataset
args_.train_file = url_to_data_path(args_.train_url)
args_.dev_file = url_to_data_path(args_.dev_url)
if args_.include_test_examples:
args_.test_file = url_to_data_path(args_.test_url)
glove_dir = url_to_data_path(args_.glove_url.replace('.zip', ''))
glove_ext = f'.txt' if glove_dir.endswith('d') else f'.{args_.glove_dim}d.txt'
args_.glove_file = os.path.join(glove_dir, os.path.basename(glove_dir) + glove_ext)
pre_process(args_)