-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
514 lines (458 loc) · 22.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import torch
import random
import yaml
import argparse
import pandas as pd
import os
from os import cpu_count
import cv2
import numpy as np
import math
from transforms.albu import IsotropicResize
from multiprocessing import Manager
from multiprocessing.pool import Pool
from progress.bar import Bar
from tqdm import tqdm
from functools import partial
from sklearn.utils import shuffle
from pytorch_lightning import seed_everything
import clip
from sklearn.model_selection import train_test_split
import seaborn as sns
import csv
from sklearn import metrics
from sklearn.metrics import f1_score, accuracy_score
from numpy import loadtxt
from utils import custom_round, multiple_custom_round
import spacy
import matplotlib.pyplot as plt
import en_core_web_sm
import timm
from timm.scheduler.cosine_lr import CosineLRScheduler
from albumentations import Compose, PadIfNeeded
from sklearn.model_selection import train_test_split
import collections
from images_dataset import ImagesDataset
from progress.bar import ChargingBar
from utils import check_correct, resize, get_n_params, center_crop
#from transformers import AutoImageProcessor, SwinModel
from torch.utils.tensorboard import SummaryWriter
from torchvision.models import resnet50, ResNet50_Weights
from collections import Counter
IMAGE_SIZE = 224
def read_images(caption, dataset, data_path, mode, transform):
caption_path = os.path.join(data_path, caption)
#caption = clip.tokenize([str(caption)])
images_paths = os.listdir(caption_path)
for image_name in images_paths:
if "tags.txt" in image_name:
continue
if "real" in image_name:
label = 0
else:
try:
if "-" in image_name:
generation = int(image_name.split("-")[1].split(".")[0])
else:
generation = int(image_name.split(".")[0])
except:
print(caption, image_name)
if generation == 0:
label = 1
else:
continue
image_path = os.path.join(caption_path, image_name)
image = cv2.imread(image_path)
if image is None:
continue
if opt.analyze_tags:
tags_path = os.path.join(caption_path.replace("glide_", ""), "tags.txt")
tags = []
with open(tags_path, 'r') as fd:
reader = csv.reader(fd)
for row in reader:
tags.append(row[0])
image = center_crop(image)
image = transform(image=image)['image']
if opt.analyze_tags:
row = (image, caption, label, tags)
else:
row = (image, caption, label)
dataset.append(row)
def get_text_features(caption, nlp):
# Features Vector
features = {"LENGTH": len(caption),
"ADJ": 0,
"ADP": 0,
"ADV": 0,
"AUX": 0,
"CCONJ": 0,
"DET": 0,
"INTJ": 0,
"NOUN": 0,
"NUM": 0,
"PART": 0,
"PRON": 0,
"PROPN": 0,
"PUNCT": 0,
"SCONJ": 0,
"SYM": 0,
"VERB": 0,
"X": 0,
"SPACE": 0,
"STOPS": 0,
"NON_ALPHA": 0,
"NAMED_ENTITIES": 0,
"LABEL": 0,
"BINARY_LABEL": 0}
caption = nlp(caption)
for token in caption:
pos = token.pos_
features[pos] += 1
if token.is_stop:
features["STOPS"] += 1
if not token.is_alpha:
features["NON_ALPHA"] += 1
for ent in caption.ents:
if ent.label_ != "":
features["NAMED_ENTITIES"] += 1
return list(features.values()), list(features.keys())
def create_pre_transform(size):
return Compose([
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
])
# Main body
if __name__ == "__main__":
seed_everything(42)
random.seed(42)
parser = argparse.ArgumentParser()
parser.add_argument('--workers', default=100, type=int,
help='Number of data loader workers.')
parser.add_argument('--test_path', default='../datasets/diffused_coco/test', type=str,
help='Test directory')
parser.add_argument('--model_weights', default='', type=str, metavar='PATH',
help='Path to the checkpoint (default: none).')
parser.add_argument('--model_name', type=str, default='model',
help='Model name.')
parser.add_argument('--display_pre', type=str, default='',
help='Display pre.')
parser.add_argument('--display_post', type=str, default='',
help='Display post.')
parser.add_argument('--gpu_id', default=6, type=int,
help='ID of GPU to be used.')
parser.add_argument('--config', type=str, default='',
help="Which configuration to use. See into 'config' folder.")
parser.add_argument('--model', type=int, default=0,
help="Which model architecture version to be trained (0: SwinViT, 1: Resnet50, 2: CLIP+MLP; 3: CLIP+LMLP)")
parser.add_argument('--clip_mode', type=int, default=0,
help="Which model architecture version to be trained (0: Resnet50, 1: ViT)")
parser.add_argument('--mode', type=int, default=0,
help="Which mode to be used (0: Image-Only, 1: Image+Text[Only CLIP])")
parser.add_argument('--show_stats', action="store_true", default=False,
help="Show stats")
parser.add_argument('--analyze_tags', action="store_true", default=False,
help="Use tags.txt for error analysis.")
opt = parser.parse_args()
print(opt)
# Model Loading
if opt.config != '':
with open(opt.config, 'r') as ymlfile:
config = yaml.safe_load(ymlfile)
if opt.mode == 0 and opt.model < 2:
if opt.model == 0:
HUB_URL = "SharanSMenon/swin-transformer-hub:main"
MODEL_NAME = "swin_tiny_patch4_window7_224"
model = torch.hub.load(HUB_URL, MODEL_NAME, pretrained=True)
model.head = torch.nn.Linear(768, config['model']['num-classes'])
elif opt.model == 1:
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
model.fc = torch.nn.Linear(2048, config['model']['num-classes'])
else:
if opt.clip_mode == 0:
clip_model, preprocess = clip.load("RN50", device='cpu')
dim = 1
else:
clip_model, preprocess = clip.load("ViT-B/32", device=torch.device('cpu'))
dim = 0.5
clip_model = clip_model.float()
clip_model.to(opt.gpu_id)
clip_model.eval()
if opt.model == 2:
if opt.mode == 0:
model = torch.nn.Linear(int(1024*dim), config['model']['num-classes'])
else:
model = torch.nn.Linear(int(2048*dim), config['model']['num-classes'])
elif opt.model == 3:
if opt.mode == 0:
model = torch.nn.Sequential(torch.nn.Linear(int(1024*dim), 512),
torch.nn.Linear(512, 512),
torch.nn.Linear(512, config['model']['num-classes']))
else:
model = torch.nn.Sequential(torch.nn.Linear(int(2048*dim), 512),
torch.nn.Linear(512, 512),
torch.nn.Linear(512, config['model']['num-classes']))
elif opt.model == 4:
if opt.mode == 0:
model = torch.nn.Sequential(torch.nn.Linear(int(1024*dim), 512),
torch.nn.Linear(512, 512),
torch.nn.Linear(512, 256),
torch.nn.Linear(256, 256),
torch.nn.Linear(256, config['model']['num-classes']))
else:
model = torch.nn.Sequential(torch.nn.Linear(int(2048*dim), 512),
torch.nn.Linear(512, 512),
torch.nn.Linear(512, 256),
torch.nn.Linear(256, 256),
torch.nn.Linear(256, config['model']['num-classes']))
elif opt.model == 5:
if opt.mode == 0:
model = torch.nn.Sequential(torch.nn.Linear(int(1024*dim), 4096),
torch.nn.Linear(4096, 4096),
torch.nn.Linear(4096, 1024),
torch.nn.Linear(1024, config['model']['num-classes']))
else:
model = torch.nn.Sequential(torch.nn.Linear(int(2048*dim), 4096),
torch.nn.Linear(4096, 4096),
torch.nn.Linear(4096, 1024),
torch.nn.Linear(1024, config['model']['num-classes']))
elif opt.model == 6:
if opt.mode == 0:
model = torch.nn.Sequential(torch.nn.Linear(int(1024*dim), 8192),
torch.nn.Linear(8192, 4096),
torch.nn.Linear(4096, 4096),
torch.nn.Linear(4096, 2048),
torch.nn.Linear(2048, 2048),
torch.nn.Linear(2048, 1024),
torch.nn.Linear(1024, 1024),
torch.nn.Linear(1024, config['model']['num-classes']))
else:
model = torch.nn.Sequential(torch.nn.Linear(int(2048*dim), 8192),
torch.nn.Linear(8192, 4096),
torch.nn.Linear(4096, 4096),
torch.nn.Linear(4096, 2048),
torch.nn.Linear(2048, 2048),
torch.nn.Linear(2048, 1024),
torch.nn.Linear(1024, 1024),
torch.nn.Linear(1024, config['model']['num-classes']))
elif opt.model == 7:
model = timm.create_model('xception', pretrained=True)
model.fc = torch.nn.Linear(2048, config['model']['num-classes'])
print("*******************************************************************************************************************")
print(os.path.exists(opt.model_weights))
if opt.model_weights != '':
model_weights = opt.model_weights
while not os.path.exists(model_weights):
epoch = int(model_weights.split("_")[-1])
model_name = '_'.join(model_weights.split("_")[:-1])
model_weights = model_name + "_" + str(epoch - 1)
print("Trying new model weights", model_weights)
if epoch == 0:
print("No model found.")
exit()
model.load_state_dict(torch.load(model_weights, map_location='cpu'))
print("Weights loaded")
else:
print("No weights loaded.")
exit()
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("Model parameters:", params)
test_captions = os.listdir(opt.test_path)
mgr = Manager()
test_dataset = mgr.list()
transform = create_pre_transform(IMAGE_SIZE)
with Pool(processes=opt.workers) as p:
with tqdm(total=len(test_captions)) as pbar:
for v in p.imap_unordered(partial(read_images, dataset=test_dataset, data_path = opt.test_path, mode = opt.mode, transform=transform), test_captions):
pbar.update()
if opt.analyze_tags:
test_tags = [row[3] for row in test_dataset]
test_labels = [float(row[2]) for row in test_dataset]
test_captions = [row[1] for row in test_dataset]
test_dataset = [row[0] for row in test_dataset]
test_samples = len(test_dataset)
# Print some useful statistics
print("Test images:", len(test_dataset))
print("__TEST STATS__")
test_counters = collections.Counter(test_labels)
print(test_counters)
# Create the data loaders
if opt.config != '':
batch_size = config['test']['bs']
else:
batch_size = 8
test_dataset = ImagesDataset(np.asarray(test_dataset), test_captions, np.asarray(test_labels), IMAGE_SIZE, mode = 'val')
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, sampler=None,
batch_sampler=None, num_workers=opt.workers, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None, prefetch_factor=2,
persistent_workers=False)
del test_dataset
model = model.to(opt.gpu_id)
model.eval()
preds = []
bar = ChargingBar('PREDICT', max=(len(test_dl)))
for index, (images, captions, labels) in enumerate(test_dl):
images = np.transpose(images, (0, 3, 1, 2))
labels = labels.unsqueeze(1)
images = images.to(opt.gpu_id)
captions = captions.to(opt.gpu_id)
with torch.no_grad():
if opt.model < 2 or opt.model == 7:
test_pred = model(images)
else:
image_features = clip_model.encode_image(images)
if opt.mode == 1:
text_features = clip_model.encode_text(captions)
text_features /= text_features.norm(dim=-1, keepdim=True)
features = torch.cat((image_features, text_features), dim = 1)
else:
features = image_features
features = features.float()
features = torch.nn.functional.normalize(features)
test_pred = model(features)
test_pred = test_pred.cpu()
preds.extend(test_pred)
bar.next()
bar.finish()
preds = [np.asarray(torch.sigmoid(pred).detach().numpy()) for pred in preds]
fpr, tpr, th = metrics.roc_curve(test_labels, preds)
auc = metrics.auc(fpr, tpr)
preds = multiple_custom_round(np.asarray(preds))
accuracy = accuracy_score(preds, test_labels)
print("METRICS")
print("AUC", auc, "accuracy", accuracy)
print(opt.display_pre, str(round(accuracy*100,2)), "|", str(round(auc*100,2)), opt.display_post)
# ERROR ANALYSIS
if opt.analyze_tags:
categories = [item for sublist in test_tags for item in sublist]
categories_counter = collections.Counter(categories)
categories_errors = {key: [0, 0] for key in set(categories)}
captions_errors = {key: [0, 0] for key in set(test_captions)}
for i in range(len(preds)):
pred = preds[i]
if pred != test_labels[i]: # This image has been missclassified
caption = test_captions[i]
if opt.analyze_tags:
tags = test_tags[i]
if test_labels[i] == 0: # False positive
captions_errors[caption][0] += 1
if opt.analyze_tags:
for tag in tags:
categories_errors[tag][0] += 1
else: # False negative
captions_errors[caption][1] += 1
if opt.analyze_tags:
for tag in tags:
categories_errors[tag][1] += 1
if opt.analyze_tags:
# Clean irrelevant categories
categories = list(categories_errors.keys())
for tag in categories:
if categories_counter[tag] < 5:
del categories_errors[tag]
# Convert counters to percentage
categories = list(categories_errors.keys())
for tag in categories:
categories_errors[tag][0] = int(categories_errors[tag][0] * 100 / categories_counter[tag])
categories_errors[tag][1] = int(categories_errors[tag][1] * 100 / categories_counter[tag])
# Get average macro category errors
inanimate_categories = ["Location","Building", "Food", "Restaurant", "Island", "Event", "University", "NaturalPlace", "Automobile", "Infrastructure", "Organisation", "Town", "River", "Structure", "RouteOfTransportation", "Device", "Weapon", "BodyOfWater", "Stream", "Road", "HistoricPlace", "Village", "Software", "HistoricBuilding", "Drug", "Event", "Song", "ShoppingMall", "Hotel", "Castle", "ArtificialSatellite", "Motorcycle", "Bridge", "Aircraft", "ArchitecturalStructure", "Place", "RouteOfTransportation", "Plant", "MeanOfTransportation"]
animate_categories = ["Politician", "OfficeHolder", "Cyclist", "SoccerPlayer", "MilitaryPerson", "Species", "Scientist", "Artist", "Athlete", "SoccerPlayer", "Eukaryote", "Agent", "Person", "Writer", "MusicalArtist", "Astronaut", "SportsManager", "Cleric", "Mammal", "AmericanFootballPlayer", "MilitaryUnit"]
macro_categories_errors = {"animate": [[], 0], "inanimate": [[], 0]}
for tag in categories_errors:
if tag in inanimate_categories:
macro_categories_errors["inanimate"][0].append(categories_errors[tag][1])
if tag in animate_categories:
macro_categories_errors["animate"][0].append(categories_errors[tag][1])
macro_categories_errors["inanimate"][0] = sorted(macro_categories_errors["inanimate"][0], reverse=True)[:7]
macro_categories_errors["animate"][0] = sorted(macro_categories_errors["animate"][0], reverse=True)[:7]
for key in macro_categories_errors:
macro_categories_errors[key][1] = sum(macro_categories_errors[key][0]) / len(macro_categories_errors[key][0])
for key in categories_errors:
print(key, categories_errors[key])
print("Errors by macro category FALSE NEGATIVE")
print(macro_categories_errors)
macro_categories_errors = {"animate": [[], 0], "inanimate": [[], 0]}
for tag in categories_errors:
if tag in inanimate_categories:
macro_categories_errors["inanimate"][0].append(categories_errors[tag][0])
if tag in animate_categories:
macro_categories_errors["animate"][0].append(categories_errors[tag][0])
macro_categories_errors["inanimate"][0] = sorted(macro_categories_errors["inanimate"][0], reverse=True)[:7]
macro_categories_errors["animate"][0] = sorted(macro_categories_errors["animate"][0], reverse=True)[:7]
for key in macro_categories_errors:
macro_categories_errors[key][1] = sum(macro_categories_errors[key][0]) / len(macro_categories_errors[key][0])
for key in categories_errors:
print(key, categories_errors[key])
print("Errors by macro category FALSE POSITIVE")
print(macro_categories_errors)
# Clean irrelevant categories
for tag in categories:
if categories_errors[tag][0] + categories_errors[tag][1] < 2:
del categories_errors[tag]
categories_errors = {k: v for k, v in sorted(categories_errors.items(), key=lambda item: item[1][1], reverse=True)}
# Plots
os.makedirs(os.path.join("outputs/tests/stablediffusion", opt.model_name), exist_ok=True)
if opt.analyze_tags:
barWidth = 0.50
keys = list(categories_errors.keys())
fpc = [int(categories_errors[k][0]) for k in keys]
fnc = [int(categories_errors[k][1]) for k in keys]
r1 = np.arange(len(fpc))
r2 = [x + barWidth for x in r1]
fig = plt.figure()
fig.set_figheight(14)
fig.set_figwidth(14)
plt.barh(r1, fpc, color='#557f2d', height=barWidth, edgecolor='white', label='false positive')
plt.barh(r2, fnc, color='#7f6d5f', height=barWidth, edgecolor='white', label='false negative')
plt.yticks([r + (barWidth - 0.25) for r in range(len(fpc))], keys)
plt.ylabel('Categories', fontweight='bold')
plt.xlabel('Errors', fontweight='bold')
ax = plt.gca()
ax.invert_yaxis()
plt.legend()
plt.savefig(os.path.join("outputs/tests/stablediffusion", opt.model_name, "errors_per_category.png"))
plt.close()
captions_features = []
bar = ChargingBar('EXTRACTING LINGUISTIC FEATURES', max=(len(captions_errors.keys())))
nlp = en_core_web_sm.load()
for caption in captions_errors.keys():
features, col_names = get_text_features(caption, nlp)
# -2: False positive; -1: False negative: +1: True positive: +2: True negative
if captions_errors[caption][0] > 0: # Add a row with false positive value
features[-2] = -2
features[-1] = 1
else: # Add a row with true positive
features[-2] = 2
features[-1] = 0
captions_features.append(features)
if captions_errors[caption][1] > 0: # Add a row with false negative value
features[-2] = -1
features[-1] = 1
else: # Add a row with true negative
features[-2] = 1
features[-1] = 0
captions_features.append(features)
bar.next()
bar.finish()
df = pd.DataFrame(captions_features, columns=col_names)
correlations = dict.fromkeys(col_names[:-2], 0)
for column in col_names[:-2]:
correlations[column] = df["LABEL"].corr(df[column])
df_correlations = pd.DataFrame(correlations, index=["False Positive/Negative"])
heatmap = sns.heatmap(df_correlations, annot=False, square=True)
heatmap.invert_yaxis()
heatmap.set(xlabel ="Linguistic Features", ylabel = "", title ='Correlation between false\n positive/false negative and linguistic features')
fig = heatmap.get_figure()
fig.savefig(os.path.join("outputs/tests/stablediffusion", opt.model_name, "correlation.png"))
fig.clf()
for column in col_names[:-2]:
correlations[column] = df["BINARY_LABEL"].corr(df[column])
df_correlations = pd.DataFrame(correlations, index=["Wrong/Correct Classification"])
heatmap = sns.heatmap(df_correlations, annot=False, square=True)
heatmap.invert_yaxis()
heatmap.set(xlabel ="Linguistic Features", ylabel = "", title ='Correlation between wrong/correct\nclassification and linguistic features')
fig = heatmap.get_figure()
fig.savefig(os.path.join("outputs/tests/stablediffusion", opt.model_name, "correlation_binary_label.png"))