forked from clementfarabet/lua---nnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpatialPyramid.lua
185 lines (164 loc) · 5.72 KB
/
SpatialPyramid.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
local SpatialPyramid, parent = torch.class('nn.SpatialPyramid', 'nn.Module')
local help_desc = [[
Simplified (and more flexible regarding sizes) fovea:
From a given image, generates a pyramid of scales, and process each scale
with the given list of processors.
The result of each module/scale is then
upsampled to produce a homogenous list of 3D feature maps (a table of 3D tensors)
grouping the different scales.
There are two operating modes: focused [mostly training], and global [inference].
In global mode,
the entire input is processed.
In focused mode, the fovea is first focused on a particular (x,y) point.
This function has two additional parameters, w and h, that represent the size
of the OUTPUT of the processors.
To focus the fovea, simply call fovea:focus(x,y,w,h) before doing a forward.
A call to fovea:focus(nil) makes it unfocus (go back to global mode).
If prescaled_input is true, then the input has to be a table of pre-downscaled
3D tensors. It does not work in focus mode.
]]
function SpatialPyramid:__init(ratios, processors, kW, kH, dW, dH, xDimIn, yDimIn,
xDimOut, yDimOut, prescaled_input)
parent.__init(self)
self.prescaled_input = prescaled_input or false
assert(#ratios == #processors)
self.ratios = ratios
self.kH = kH
self.kW = kW
self.dH = dH
self.dW = dW
self.focused = false
self.x = 0
self.y = 0
self.wFocus = 0
self.hFocus = 0
self.processors = processors
local wPad = kW-dW
local hPad = kH-dH
local padLeft = math.floor(wPad/2)
local padRight = math.ceil (wPad/2)
local padTop = math.floor(hPad/2)
local padBottom = math.ceil (hPad/2)
-- focused
self.focused_pipeline = nn.ConcatTable()
for i = 1,#self.ratios do
local seq = nn.Sequential()
seq:add(nn.SpatialPadding(0,0,0,0, yDimIn, xDimIn))
seq:add(nn.SpatialReSamplingEx{rwidth=1.0/self.ratios[i], rheight=1.0/self.ratios[i],
xDim = xDimIn, yDim = yDimIn, mode='average'})
seq:add(processors[i])
self.focused_pipeline:add(seq)
end
-- unfocused
if prescaled_input then
self.unfocused_pipeline = nn.ParallelTable()
else
self.unfocused_pipeline = nn.ConcatTable()
end
for i = 1,#self.ratios do
local seq = nn.Sequential()
if not prescaled_input then
seq:add(nn.SpatialReSamplingEx{rwidth=1.0/self.ratios[i], rheight=1.0/self.ratios[i],
xDim = xDimIn, yDim = yDimIn, mode='average'})
seq:add(nn.SpatialPadding(padLeft, padRight, padTop, padBottom, yDimIn, xDimIn))
end
seq:add(processors[i])
seq:add(nn.SpatialReSamplingEx{rwidth=self.ratios[i], rheight=self.ratios[i],
xDim=xDimOut, yDim=yDimOut, mode='simple'})
self.unfocused_pipeline:add(seq)
end
end
function SpatialPyramid:focus(x, y, w, h)
w = w or 1
h = h or 1
if x and y then
self.x = x
self.y = y
self.focused = true
self.winWidth = {}
self.winHeight = {}
for i = 1,#self.ratios do
self.winWidth[i] = self.ratios[i] * ((w-1) * self.dW + self.kW)
self.winHeight[i] = self.ratios[i] * ((h-1) * self.dH + self.kH)
end
else
self.focused = false
end
end
function SpatialPyramid:configureFocus(wImg, hImg)
for i = 1,#self.ratios do
local padder = self.focused_pipeline.modules[i].modules[1]
padder.pad_l = -self.x + math.ceil (self.winWidth[i] /2)
padder.pad_r = self.x + math.floor(self.winWidth[i] /2) - wImg
padder.pad_t = -self.y + math.ceil (self.winHeight[i]/2)
padder.pad_b = self.y + math.floor(self.winHeight[i]/2) - hImg
end
end
function SpatialPyramid:checkSize(input)
for i = 1,#self.ratios do
if (math.fmod(input:size(2), self.ratios[i]) ~= 0) or
(math.fmod(input:size(3), self.ratios[i]) ~= 0) then
error('SpatialPyramid: input sizes must be multiple of ratios')
end
end
end
function SpatialPyramid:updateOutput(input)
if not self.prescaled_input then
self:checkSize(input)
end
if self.focused then
self:configureFocus(input:size(3), input:size(2))
self.output = self.focused_pipeline:updateOutput(input)
else
self.output = self.unfocused_pipeline:updateOutput(input)
end
return self.output
end
function SpatialPyramid:updateGradInput(input, gradOutput)
if self.focused then
self.gradInput = self.focused_pipeline:updateGradInput(input, gradOutput)
else
self.gradInput = self.unfocused_pipeline:updateGradInput(input, gradOutput)
end
return self.gradInput
end
function SpatialPyramid:zeroGradParameters()
self.focused_pipeline:zeroGradParameters()
self.unfocused_pipeline:zeroGradParameters()
end
function SpatialPyramid:accGradParameters(input, gradOutput, scale)
if self.focused then
self.focused_pipeline:accGradParameters(input, gradOutput, scale)
else
self.unfocused_pipeline:accGradParameters(input, gradOutput, scale)
end
end
function SpatialPyramid:updateParameters(learningRate)
if self.focused then
self.focused_pipeline:updateParameters(learningRate)
else
self.unfocused_pipeline:updateParameters(learningRate)
end
end
function SpatialPyramid:type(type)
parent.type(self, type)
self.focused_pipeline:type(type)
self.unfocused_pipeline:type(type)
return self
end
function SpatialPyramid:parameters()
if self.focused then
return self.focused_pipeline:parameters()
else
return self.unfocused_pipeline:parameters()
end
end
function SpatialPyramid:__tostring__()
if self.focused then
local dscr = tostring(self.focused_pipeline):gsub('\n', '\n | ')
return 'SpatialPyramid (focused)\n' .. dscr
else
local dscr = tostring(self.unfocused_pipeline):gsub('\n', '\n | ')
return 'SpatialPyramid (unfocused)\n' .. dscr
end
end