forked from paul-buerkner/brms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
98 lines (98 loc) · 3.01 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
Package: brms
Encoding: UTF-8
Type: Package
Title: Bayesian Regression Models using 'Stan'
Version: 2.18.1
Date: 2022-09-28
Authors@R:
c(person("Paul-Christian", "Bürkner", email = "[email protected]",
role = c("aut", "cre")),
person("Jonah", "Gabry", role = c("ctb")),
person("Sebastian", "Weber", role = c("ctb")),
person("Andrew", "Johnson", role = c("ctb")),
person("Martin", "Modrak", role = c("ctb")),
person("Hamada S.", "Badr", role = c("ctb")),
person("Frank", "Weber", role = c("ctb")),
person("Mattan S.", "Ben-Shachar", role = c("ctb")),
person("Hayden", "Rabel", role = c("ctb")),
person("Simon C.", "Mills", role = c("ctb")))
Depends:
R (>= 3.5.0),
Rcpp (>= 0.12.0),
methods
Imports:
rstan (>= 2.19.2),
ggplot2 (>= 2.0.0),
loo (>= 2.3.1),
posterior (>= 1.0.0),
Matrix (>= 1.1.1),
mgcv (>= 1.8-13),
rstantools (>= 2.1.1),
bayesplot (>= 1.5.0),
shinystan (>= 2.4.0),
bridgesampling (>= 0.3-0),
glue (>= 1.3.0),
future (>= 1.19.0),
matrixStats,
nleqslv,
nlme,
coda,
abind,
stats,
utils,
parallel,
grDevices,
backports
Suggests:
testthat (>= 0.9.1),
emmeans (>= 1.4.2),
cmdstanr (>= 0.5.0),
projpred (>= 2.0.0),
RWiener,
rtdists,
extraDistr,
processx,
mice,
spdep,
mnormt,
lme4,
MCMCglmm,
splines2,
ape,
arm,
statmod,
digest,
diffobj,
R.rsp,
gtable,
shiny,
knitr,
rmarkdown
Description: Fit Bayesian generalized (non-)linear multivariate multilevel models
using 'Stan' for full Bayesian inference. A wide range of distributions
and link functions are supported, allowing users to fit -- among others --
linear, robust linear, count data, survival, response times, ordinal,
zero-inflated, hurdle, and even self-defined mixture models all in a
multilevel context. Further modeling options include both theory-driven and
data-driven non-linear terms, auto-correlation structures, censoring and
truncation, meta-analytic standard errors, and quite a few more.
In addition, all parameters of the response distribution can be predicted
in order to perform distributional regression. Prior specifications are
flexible and explicitly encourage users to apply prior distributions that
actually reflect their prior knowledge. Models can easily be evaluated and
compared using several methods assessing posterior or prior predictions.
References: Bürkner (2017) <doi:10.18637/jss.v080.i01>;
Bürkner (2018) <doi:10.32614/RJ-2018-017>;
Bürkner (2021) <doi:10.18637/jss.v100.i05>; Carpenter et al. (2017)
<doi:10.18637/jss.v076.i01>.
LazyData: true
NeedsCompilation: no
License: GPL-2
URL: https://github.com/paul-buerkner/brms, https://discourse.mc-stan.org/
BugReports: https://github.com/paul-buerkner/brms/issues
Additional_repositories:
https://mc-stan.org/r-packages/
VignetteBuilder:
knitr,
R.rsp
RoxygenNote: 7.2.1