-
Notifications
You must be signed in to change notification settings - Fork 0
/
_inference.py
890 lines (763 loc) · 36.6 KB
/
_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Related resources:
# https://huggingface.co/tasks
# https://huggingface.co/docs/huggingface.js/inference/README
# https://github.com/huggingface/huggingface.js/tree/main/packages/inference/src
# https://github.com/huggingface/text-generation-inference/tree/main/clients/python
# https://github.com/huggingface/text-generation-inference/blob/main/clients/python/text_generation/client.py
# https://huggingface.slack.com/archives/C03E4DQ9LAJ/p1680169099087869
# https://github.com/huggingface/unity-api#tasks
#
# Some TODO:
# - validate inputs/options/parameters? with Pydantic for instance? or only optionally?
# - add all tasks
# - handle async requests
#
# NOTE: the philosophy of this client is "let's make it as easy as possible to use it, even if less optimized". Some
# examples of how it translates:
# - Timeout / Server unavailable is handled by the client in a single "timeout" parameter.
# - Files can be provided as bytes, file paths, or URLs and the client will try to "guess" the type.
# - Images are parsed as PIL.Image for easier manipulation.
# - Provides a "recommended model" for each task => suboptimal but user-wise quicker to get a first script running.
# - Only the main parameters are publicly exposed. Power users can always read the docs for more options.
import base64
import io
import logging
import time
import warnings
from contextlib import contextmanager
from pathlib import Path
from typing import TYPE_CHECKING, Any, BinaryIO, ContextManager, Dict, Generator, List, Optional, Union, overload
from requests import HTTPError, Response
from ._inference_types import ClassificationOutput, ConversationalOutput, ImageSegmentationOutput
from .constants import INFERENCE_ENDPOINT
from .utils import build_hf_headers, get_session, hf_raise_for_status, is_numpy_available, is_pillow_available
from .utils._typing import Literal
if TYPE_CHECKING:
import numpy as np
from PIL import Image
logger = logging.getLogger(__name__)
RECOMMENDED_MODELS = {
"audio-classification": "superb/hubert-large-superb-er",
"automatic-speech-recognition": "facebook/wav2vec2-large-960h-lv60-self",
"conversational": "microsoft/DialoGPT-large",
"feature-extraction": "facebook/bart-base",
"image-classification": "google/vit-base-patch16-224",
"image-segmentation": "facebook/detr-resnet-50-panoptic",
"image-to-image": "timbrooks/instruct-pix2pix",
"image-to-text": "nlpconnect/vit-gpt2-image-captioning",
"sentence-similarity": "sentence-transformers/all-MiniLM-L6-v2",
"summarization": "facebook/bart-large-cnn",
"text-to-image": "stabilityai/stable-diffusion-2-1",
"text-to-speech": "espnet/kan-bayashi_ljspeech_vits",
}
UrlT = str
PathT = Union[str, Path]
BinaryT = Union[bytes, BinaryIO]
ContentT = Union[BinaryT, PathT, UrlT]
class InferenceTimeoutError(HTTPError, TimeoutError):
"""Error raised when a model is unavailable or the request times out."""
class InferenceClient:
"""
Initialize a new Inference Client.
[`InferenceClient`] aims to provide a unified experience to perform inference. The client can be used
seamlessly with either the (free) Inference API or self-hosted Inference Endpoints.
Args:
model (`str`, `optional`):
The model to run inference with. Can be a model id hosted on the Hugging Face Hub, e.g. `bigcode/starcoder`
or a URL to a deployed Inference Endpoint. Defaults to None, in which case a recommended model is
automatically selected for the task.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token.
timeout (`float`, `optional`):
The maximum number of seconds to wait for a response from the server. Loading a new model in Inference
API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.
"""
def __init__(
self, model: Optional[str] = None, token: Optional[str] = None, timeout: Optional[float] = None
) -> None:
self.model: Optional[str] = model
self.headers = build_hf_headers(token=token)
self.timeout = timeout
def __repr__(self):
return f"<InferenceClient(model='{self.model if self.model else ''}', timeout={self.timeout})>"
def post(
self,
*,
json: Optional[Union[str, Dict, List]] = None,
data: Optional[ContentT] = None,
model: Optional[str] = None,
task: Optional[str] = None,
) -> Response:
"""
Make a POST request to the inference server.
Args:
json (`Union[str, Dict, List]`, *optional*):
The JSON data to send in the request body. Defaults to None.
data (`Union[str, Path, bytes, BinaryIO]`, *optional*):
The content to send in the request body. It can be raw bytes, a pointer to an opened file, a local file
path, or a URL to an online resource (image, audio file,...). If both `json` and `data` are passed,
`data` will take precedence. At least `json` or `data` must be provided. Defaults to None.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. Will override the model defined at the instance level. Defaults to None.
task (`str`, *optional*):
The task to perform on the inference. Used only to default to a recommended model if `model` is not
provided. At least `model` or `task` must be provided. Defaults to None.
Returns:
Response: The `requests` HTTP response.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
"""
url = self._resolve_url(model, task)
if data is not None and json is not None:
warnings.warn("Ignoring `json` as `data` is passed as binary.")
t0 = time.time()
timeout = self.timeout
while True:
with _open_as_binary(data) as data_as_binary:
try:
response = get_session().post(
url, json=json, data=data_as_binary, headers=self.headers, timeout=self.timeout
)
except TimeoutError as error:
# Convert any `TimeoutError` to a `InferenceTimeoutError`
raise InferenceTimeoutError(f"Inference call timed out: {url}") from error
try:
hf_raise_for_status(response)
except HTTPError as error:
if error.response.status_code == 503:
# If Model is unavailable, either raise a TimeoutError...
if timeout is not None and time.time() - t0 > timeout:
raise InferenceTimeoutError(
f"Model not loaded on the server: {url}. Please retry with a higher timeout (current:"
f" {self.timeout})."
) from error
# ...or wait 1s and retry
logger.info(f"Waiting for model to be loaded on the server: {error}")
time.sleep(1)
if timeout is not None:
timeout = max(self.timeout - (time.time() - t0), 1) # type: ignore
continue
raise
break
return response
def audio_classification(
self,
audio: ContentT,
*,
model: Optional[str] = None,
) -> List[ClassificationOutput]:
"""
Perform audio classification on the provided audio content.
Args:
audio (Union[str, Path, bytes, BinaryIO]):
The audio content to classify. It can be raw audio bytes, a local audio file, or a URL pointing to an
audio file.
model (`str`, *optional*):
The model to use for audio classification. Can be a model ID hosted on the Hugging Face Hub
or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for
audio classification will be used.
Returns:
`List[Dict]`: The classification output containing the predicted label and its confidence.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.audio_classification("audio.wav")
[{'score': 0.4976358711719513, 'label': 'hap'}, {'score': 0.3677836060523987, 'label': 'neu'},...]
```
"""
response = self.post(data=audio, model=model, task="audio-classification")
return response.json()
def automatic_speech_recognition(
self,
audio: ContentT,
*,
model: Optional[str] = None,
) -> str:
"""
Perform automatic speech recognition (ASR or audio-to-text) on the given audio content.
Args:
audio (Union[str, Path, bytes, BinaryIO]):
The content to transcribe. It can be raw audio bytes, local audio file, or a URL to an audio file.
model (`str`, *optional*):
The model to use for ASR. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. If not provided, the default recommended model for ASR will be used.
Returns:
str: The transcribed text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.automatic_speech_recognition("hello_world.wav")
"hello world"
```
"""
response = self.post(data=audio, model=model, task="automatic-speech-recognition")
return response.json()["text"]
def conversational(
self,
text: str,
generated_responses: Optional[List[str]] = None,
past_user_inputs: Optional[List[str]] = None,
*,
parameters: Optional[Dict[str, Any]] = None,
model: Optional[str] = None,
) -> ConversationalOutput:
"""
Generate conversational responses based on the given input text (i.e. chat with the API).
Args:
text (`str`):
The last input from the user in the conversation.
generated_responses (`List[str]`, *optional*):
A list of strings corresponding to the earlier replies from the model. Defaults to None.
past_user_inputs (`List[str]`, *optional*):
A list of strings corresponding to the earlier replies from the user. Should be the same length as
`generated_responses`. Defaults to None.
parameters (`Dict[str, Any]`, *optional*):
Additional parameters for the conversational task. Defaults to None. For more details about the available
parameters, please refer to [this page](https://huggingface.co/docs/api-inference/detailed_parameters#conversational-task)
model (`str`, *optional*):
The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used.
Defaults to None.
Returns:
`Dict`: The generated conversational output.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> output = client.conversational("Hi, who are you?")
>>> output
{'generated_text': 'I am the one who knocks.', 'conversation': {'generated_responses': ['I am the one who knocks.'], 'past_user_inputs': ['Hi, who are you?']}, 'warnings': ['Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.']}
>>> client.conversational(
... "Wow, that's scary!",
... generated_responses=output["conversation"]["generated_responses"],
... past_user_inputs=output["conversation"]["past_user_inputs"],
... )
```
"""
payload: Dict[str, Any] = {"inputs": {"text": text}}
if generated_responses is not None:
payload["inputs"]["generated_responses"] = generated_responses
if past_user_inputs is not None:
payload["inputs"]["past_user_inputs"] = past_user_inputs
if parameters is not None:
payload["parameters"] = parameters
response = self.post(json=payload, model=model, task="conversational")
return response.json()
def feature_extraction(self, text: str, *, model: Optional[str] = None) -> "np.ndarray":
"""
Generate embeddings for a given text.
Args:
text (`str`):
The text to embed.
model (`str`, *optional*):
The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used.
Defaults to None.
Returns:
`np.ndarray`: The embedding representing the input text as a float32 numpy array.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.feature_extraction("Hi, who are you?")
array([[ 2.424802 , 2.93384 , 1.1750331 , ..., 1.240499, -0.13776633, -0.7889173 ],
[-0.42943227, -0.6364878 , -1.693462 , ..., 0.41978157, -2.4336355 , 0.6162071 ],
...,
[ 0.28552425, -0.928395 , -1.2077185 , ..., 0.76810825, -2.1069427 , 0.6236161 ]], dtype=float32)
```
"""
response = self.post(json={"inputs": text}, model=model, task="feature-extraction")
np = _import_numpy()
return np.array(response.json()[0], dtype="float32")
def image_classification(
self,
image: ContentT,
*,
model: Optional[str] = None,
) -> List[ClassificationOutput]:
"""
Perform image classification on the given image using the specified model.
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The image to classify. It can be raw bytes, an image file, or a URL to an online image.
model (`str`, *optional*):
The model to use for image classification. Can be a model ID hosted on the Hugging Face Hub or a URL to a
deployed Inference Endpoint. If not provided, the default recommended model for image classification will be used.
Returns:
`List[Dict]`: a list of dictionaries containing the predicted label and associated probability.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.image_classification("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg")
[{'score': 0.9779096841812134, 'label': 'Blenheim spaniel'}, ...]
```
"""
response = self.post(data=image, model=model, task="image-classification")
return response.json()
def image_segmentation(
self,
image: ContentT,
*,
model: Optional[str] = None,
) -> List[ImageSegmentationOutput]:
"""
Perform image segmentation on the given image using the specified model.
<Tip warning={true}>
You must have `PIL` installed if you want to work with images (`pip install Pillow`).
</Tip>
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The image to segment. It can be raw bytes, an image file, or a URL to an online image.
model (`str`, *optional*):
The model to use for image segmentation. Can be a model ID hosted on the Hugging Face Hub or a URL to a
deployed Inference Endpoint. If not provided, the default recommended model for image segmentation will be used.
Returns:
`List[Dict]`: A list of dictionaries containing the segmented masks and associated attributes.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.image_segmentation("cat.jpg"):
[{'score': 0.989008, 'label': 'LABEL_184', 'mask': <PIL.PngImagePlugin.PngImageFile image mode=L size=400x300 at 0x7FDD2B129CC0>}, ...]
```
"""
# Segment
response = self.post(data=image, model=model, task="image-segmentation")
output = response.json()
# Parse masks as PIL Image
if not isinstance(output, list):
raise ValueError(f"Server output must be a list. Got {type(output)}: {str(output)[:200]}...")
for item in output:
item["mask"] = _b64_to_image(item["mask"])
return output
def image_to_image(
self,
image: ContentT,
prompt: Optional[str] = None,
*,
negative_prompt: Optional[str] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: Optional[int] = None,
guidance_scale: Optional[float] = None,
model: Optional[str] = None,
**kwargs,
) -> "Image":
"""
Perform image-to-image translation using a specified model.
<Tip warning={true}>
You must have `PIL` installed if you want to work with images (`pip install Pillow`).
</Tip>
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The input image for translation. It can be raw bytes, an image file, or a URL to an online image.
prompt (`str`, *optional*):
The text prompt to guide the image generation.
negative_prompt (`str`, *optional*):
A negative prompt to guide the translation process.
height (`int`, *optional*):
The height in pixels of the generated image.
width (`int`, *optional*):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*):
Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
Returns:
`Image`: The translated image.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> image = client.image_to_image("cat.jpg", prompt="turn the cat into a tiger")
>>> image.save("tiger.jpg")
```
"""
parameters = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
**kwargs,
}
if all(parameter is None for parameter in parameters.values()):
# Either only an image to send => send as raw bytes
self.post(data=image, model=model, task="image-to-image")
data = image
payload: Optional[Dict[str, Any]] = None
else:
# Or an image + some parameters => use base64 encoding
data = None
payload = {"inputs": _b64_encode(image)}
for key, value in parameters.items():
if value is not None:
payload[key] = value
response = self.post(json=payload, data=data, model=model, task="image-to-image")
return _response_to_image(response)
def image_to_text(self, image: ContentT, *, model: Optional[str] = None) -> str:
"""
Takes an input image and return text.
Models can have very different outputs depending on your use case (image captioning, optical character recognition
(OCR), Pix2Struct, etc). Please have a look to the model card to learn more about a model's specificities.
Args:
image (`Union[str, Path, bytes, BinaryIO]`):
The input image to caption. It can be raw bytes, an image file, or a URL to an online image..
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
Returns:
`str`: The generated text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.image_to_text("cat.jpg")
'a cat standing in a grassy field '
>>> client.image_to_text("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg")
'a dog laying on the grass next to a flower pot '
```
"""
response = self.post(data=image, model=model, task="image-to-text")
return response.json()[0]["generated_text"]
def sentence_similarity(
self, sentence: str, other_sentences: List[str], *, model: Optional[str] = None
) -> List[float]:
"""
Compute the semantic similarity between a sentence and a list of other sentences by comparing their embeddings.
Args:
sentence (`str`):
The main sentence to compare to others.
other_sentences (`List[str]`):
The list of sentences to compare to.
model (`str`, *optional*):
The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to
a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used.
Defaults to None.
Returns:
`List[float]`: The embedding representing the input text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.sentence_similarity(
... "Machine learning is so easy.",
... other_sentences=[
... "Deep learning is so straightforward.",
... "This is so difficult, like rocket science.",
... "I can't believe how much I struggled with this.",
... ],
... )
[0.7785726189613342, 0.45876261591911316, 0.2906220555305481]
```
"""
response = self.post(
json={"inputs": {"source_sentence": sentence, "sentences": other_sentences}},
model=model,
task="sentence-similarity",
)
return response.json()
def summarization(
self,
text: str,
*,
parameters: Optional[Dict[str, Any]] = None,
model: Optional[str] = None,
) -> str:
"""
Generate a summary of a given text using a specified model.
Args:
text (`str`):
The input text to summarize.
parameters (`Dict[str, Any]`, *optional*):
Additional parameters for summarization. Check out this [page](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task)
for more details.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
Returns:
`str`: The generated summary text.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> client.summarization("The Eiffel tower...")
'The Eiffel tower is one of the most famous landmarks in the world....'
```
"""
payload: Dict[str, Any] = {"inputs": text}
if parameters is not None:
payload["parameters"] = parameters
response = self.post(json=payload, model=model, task="summarization")
return response.json()[0]["summary_text"]
def text_to_image(
self,
prompt: str,
*,
negative_prompt: Optional[str] = None,
height: Optional[float] = None,
width: Optional[float] = None,
num_inference_steps: Optional[float] = None,
guidance_scale: Optional[float] = None,
model: Optional[str] = None,
**kwargs,
) -> "Image":
"""
Generate an image based on a given text using a specified model.
<Tip warning={true}>
You must have `PIL` installed if you want to work with images (`pip install Pillow`).
</Tip>
Args:
prompt (`str`):
The prompt to generate an image from.
negative_prompt (`str`, *optional*):
An optional negative prompt for the image generation.
height (`float`, *optional*):
The height in pixels of the image to generate.
width (`float`, *optional*):
The width in pixels of the image to generate.
num_inference_steps (`int`, *optional*):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*):
Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
Returns:
`Image`: The generated image.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> image = client.text_to_image("An astronaut riding a horse on the moon.")
>>> image.save("astronaut.png")
>>> image = client.text_to_image(
... "An astronaut riding a horse on the moon.",
... negative_prompt="low resolution, blurry",
... model="stabilityai/stable-diffusion-2-1",
... )
>>> image.save("better_astronaut.png")
```
"""
parameters = {
"inputs": prompt,
"negative_prompt": negative_prompt,
"height": height,
"width": width,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
**kwargs,
}
payload = {}
for key, value in parameters.items():
if value is not None:
payload[key] = value
response = self.post(json=payload, model=model, task="text-to-image")
return _response_to_image(response)
def text_to_speech(self, text: str, *, model: Optional[str] = None) -> bytes:
"""
Synthesize an audio of a voice pronouncing a given text.
Args:
text (`str`):
The text to synthesize.
model (`str`, *optional*):
The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed
Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None.
Returns:
`bytes`: The generated audio.
Raises:
[`InferenceTimeoutError`]:
If the model is unavailable or the request times out.
`HTTPError`:
If the request fails with an HTTP error status code other than HTTP 503.
Example:
```py
>>> from pathlib import Path
>>> from huggingface_hub import InferenceClient
>>> client = InferenceClient()
>>> audio = client.text_to_speech("Hello world")
>>> Path("hello_world.wav").write_bytes(audio)
```
"""
response = self.post(json={"inputs": text}, model=model, task="text-to-speech")
return response.content
def _resolve_url(self, model: Optional[str] = None, task: Optional[str] = None) -> str:
model = model or self.model
# If model is already a URL, ignore `task` and return directly
if model is not None and (model.startswith("http://") or model.startswith("https://")):
return model
# # If no model but task is set => fetch the recommended one for this task
if model is None:
if task is None:
raise ValueError(
"You must specify at least a model (repo_id or URL) or a task, either when instantiating"
" `InferenceClient` or when making a request."
)
model = _get_recommended_model(task)
# Compute InferenceAPI url
return (
# Feature-extraction and sentence-similarity are the only cases where we handle models with several tasks.
f"{INFERENCE_ENDPOINT}/pipeline/{task}/{model}"
if task in ("feature-extraction", "sentence-similarity")
# Otherwise, we use the default endpoint
else f"{INFERENCE_ENDPOINT}/models/{model}"
)
def _get_recommended_model(task: str) -> str:
# TODO: load from a config file? (from the Hub?) Would make sense to make updates easier.
if task in RECOMMENDED_MODELS:
model = RECOMMENDED_MODELS[task]
logger.info(
f"Defaulting to recommended model {model} for task {task}. It is recommended to explicitly pass"
f" `model='{model}'` as argument as we do not guarantee that the recommended model will stay the same over"
" time."
)
return model
raise NotImplementedError()
@overload
def _open_as_binary(content: ContentT) -> ContextManager[BinaryT]:
... # means "if input is not None, output is not None"
@overload
def _open_as_binary(content: Literal[None]) -> ContextManager[Literal[None]]:
... # means "if input is None, output is None"
@contextmanager # type: ignore
def _open_as_binary(content: Optional[ContentT]) -> Generator[Optional[BinaryT], None, None]:
"""Open `content` as a binary file, either from a URL, a local path, or raw bytes.
Do nothing if `content` is None,
TODO: handle a PIL.Image as input
TODO: handle base64 as input
"""
# If content is a string => must be either a URL or a path
if isinstance(content, str):
if content.startswith("https://") or content.startswith("http://"):
logger.debug(f"Downloading content from {content}")
yield get_session().get(content).content # TODO: retrieve as stream and pipe to post request ?
return
content = Path(content)
if not content.exists():
raise FileNotFoundError(
f"File not found at {content}. If `data` is a string, it must either be a URL or a path to a local"
" file. To pass raw content, please encode it as bytes first."
)
# If content is a Path => open it
if isinstance(content, Path):
logger.debug(f"Opening content from {content}")
with content.open("rb") as f:
yield f
else:
# Otherwise: already a file-like object or None
yield content
def _b64_encode(content: ContentT) -> str:
"""Encode a raw file (image, audio) into base64. Can be byes, an opened file, a path or a URL."""
with _open_as_binary(content) as data:
data_as_bytes = data if isinstance(data, bytes) else data.read()
return base64.b64encode(data_as_bytes).decode()
def _b64_to_image(encoded_image: str) -> "Image":
"""Parse a base64-encoded string into a PIL Image."""
Image = _import_pil_image()
return Image.open(io.BytesIO(base64.b64decode(encoded_image)))
def _response_to_image(response: Response) -> "Image":
"""Parse a Response object into a PIL Image.
Expects the response body to be raw bytes. To deal with b64 encoded images, use `_b64_to_image` instead.
"""
Image = _import_pil_image()
return Image.open(io.BytesIO(response.content))
def _import_pil_image():
"""Make sure `PIL` is installed on the machine."""
if not is_pillow_available():
raise ImportError(
"Please install Pillow to use deal with images (`pip install Pillow`). If you don't want the image to be"
" post-processed, use `client.post(...)` and get the raw response from the server."
)
from PIL import Image
return Image
def _import_numpy():
"""Make sure `numpy` is installed on the machine."""
if not is_numpy_available():
raise ImportError("Please install numpy to use deal with embeddings (`pip install numpy`).")
import numpy
return numpy