-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_labels.py
222 lines (182 loc) · 8.72 KB
/
generate_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Builds query labels by grid search
import argparse
import itertools
import os
import numpy as np
import utility as u
from hint_sets import HintSet
from tqdm import tqdm
def get_combinations(to_switch_off: list):
temp = {1: True, 0: False}
bin_comb = list(itertools.product([0, 1], repeat=len(to_switch_off)))
bool_comb = [[temp[_[i]] for i in range(len(_))] for _ in bin_comb]
combinations = list()
for comb in bool_comb:
combinations.append(63 - sum(np.array(to_switch_off)[np.array(comb)]))
return combinations
def get_best_hint_set_static(path, query, conn_str, query_dict, reduced):
# PG default
timeout = u.evaluate_hinted_query(path, query, HintSet(63), conn_str, None)
best_hint_time = timeout
best_hint = 63
hint_set_evaluations = query_dict[query]
hint_set_evaluations["63"] = timeout
query_dict[query] = hint_set_evaluations
# timeout factor
timeout = 1.5 * timeout
for j in range(2 ** len(HintSet.operators)-1):
j = (2 ** len(HintSet.operators) - 2) - j
print("Evaluating Hint Set {}/ {}".format(j, (2 ** len(HintSet.operators)) - 2))
if j in query_dict[query]:
print('Found query entry')
query_hint_time = query_dict[query][j]
if query_hint_time < best_hint_time:
best_hint = j
best_hint_time = query_hint_time
continue
else:
print('Evaluating Query')
query_hint_time = u.evaluate_hinted_query(path, query, HintSet(j), conn_str, timeout)
if query_hint_time is None:
hint_set_evaluations = query_dict[query]
hint_set_evaluations[j] = timeout
query_dict[query] = hint_set_evaluations
print("Setting query: {} to time: {}".format(query, timeout))
else:
hint_set_evaluations = query_dict[query]
hint_set_evaluations[j] = query_hint_time
query_dict[query] = hint_set_evaluations
if query_hint_time < best_hint_time:
best_hint = j
best_hint_time = query_hint_time
print("Setting best hint to: {}".format(best_hint))
print("Setting query: {} to time: {}".format(query, query_hint_time))
query_dict[query]['opt'] = best_hint
return query_dict
def get_best_hint_set(path, query, conn_str, query_dict, reduced):
# standard timeout of 5 minutes should suffice as pg opt is at max 2.2 minutes on other evals
timeout = 300
best_hint = None
if reduced:
to_switch_off = [32, 16, 8]
iteration_list = list(sorted(get_combinations(to_switch_off)))
iteration_list = [int(_) for _ in iteration_list]
else:
iteration_list = [i for i in range(2 ** len(HintSet.operators))]
for hint_set_int in reversed(iteration_list):
print("Evaluating Hint Set {}".format(hint_set_int))
if hint_set_int in query_dict[query].keys():
print('Found query entry')
query_hint_time = query_dict[query][hint_set_int]
if timeout is None or query_hint_time < timeout:
timeout = query_hint_time
best_hint = hint_set_int
print('Found query but timed out')
continue
else:
print('Evaluating Query')
hint_set = HintSet(hint_set_int)
query_hint_time = u.evaluate_hinted_query(path, query, hint_set, conn_str, timeout)
if query_hint_time is None:
# timed out queries can not be counted
print('Timed out query')
continue
else:
# update dictionary
hint_set_evaluations = query_dict[query]
hint_set_evaluations[hint_set_int] = query_hint_time
query_dict[query] = hint_set_evaluations
# update timeout
if timeout is None or query_hint_time < timeout:
timeout = query_hint_time
best_hint = hint_set_int
print('Adjusted Timeout with Query: {}, Hint Set: {}, Time: {}'
.format(query, u.int_to_binary(hint_set_int), query_hint_time))
query_dict[query]['opt'] = best_hint
return query_dict
def run(path, save, conn_str, strategy, query_dict, static_timeout: bool, reduced: bool):
queries = u.get_queries(path)
for i in range(len(queries)):
query = queries[i]
try:
# Check if we can skip queries
opt_val = query_dict[query]['opt']
print("Found optimum for query {}, {}".format(query, opt_val))
continue
except KeyError:
# Evaluate like default
pass
print('\nEvaluating query: {}, {} / {}'.format(query, i+1, len(queries)))
if static_timeout:
print("Using static evaluation")
query_dict = get_best_hint_set_static(path, query, conn_str, query_dict, reduced)
else:
query_dict = get_best_hint_set(path, query, conn_str, query_dict, reduced)
if strategy == 'strict':
print('\nSaving evaluation')
u.save_json(query_dict, save)
elif strategy == 'interval':
if i % 20 == 0:
print('\nSaving evaluation')
u.save_json(query_dict, save)
print('\nFinal saving')
u.save_json(query_dict, save)
return
if __name__ == "__main__":
print("Using label gen version 1.08 - Reduced Support, Standard Timeout 5min")
parser = argparse.ArgumentParser(description="Generate physical operator labels for input queries and save to json")
parser.add_argument("queries", default=None, help="Directory in which .sql-queries are located")
parser.add_argument("-o", "--output", default=None, help="Output dictionary save name")
parser.add_argument("-s", "--strategy", default="interval", help="Save strategy during evaluation, strict will save"
" after each adjustment, interval after a certain "
"amount of adjustments, and lazy at the end of "
"the evaluation. Lazy is not recommended as there"
" may be a substantial loss of data upon "
"encountering unexpected errors.")
parser.add_argument("-db", "--database", default=None, help="Database string in psycopg2 format.")
parser.add_argument("-c", "--complete", default=False, help="Builds result dictionary using a static timeout of "
"1.5 times the pg default execution time.")
parser.add_argument("-r", "--reduced", default=False, help="Info to use reduced hints")
args = parser.parse_args()
query_path = args.queries
save_path = args.output
evaluation_strategy = args.strategy
args_db_string = args.database
if args_db_string == "imdb":
args_db_string = u.PG_IMDB
elif args_db_string == "stack":
args_db_string = u.PG_STACK_OVERFLOW
elif args_db_string == "stack-2016":
args_db_string = u.PG_STACK_OVERFLOW_REDUCED_16
elif args_db_string == "stack-2013":
args_db_string = u.PG_STACK_OVERFLOW_REDUCED_13
elif args_db_string == "stack-2010":
args_db_string = u.PG_STACK_OVERFLOW_REDUCED_10
elif args_db_string == "tpch":
args_db_string = u.PG_TPC_H
if query_path is None:
raise argparse.ArgumentError(args.queries, "No query path provided")
if save_path is None:
raise argparse.ArgumentError(args.queries, "No output path provided")
elif os.path.exists(save_path):
print("Loading existing Evaluation Dict")
query_eval_dict = u.load_json(save_path)
else:
# initialize dict over all queries
print("Creating new Evaluation Dict")
qs = u.get_queries(query_path)
query_eval_dict = dict(zip(qs, [dict() for _ in range(len(qs))]))
if evaluation_strategy not in ['strict', 'interval', 'lazy']:
raise ValueError('Evaluation strategy not recognized')
args_complete = args.complete
if args_complete not in ["True", "False"]:
raise ValueError("Complete evaluation option only takes boolean values.")
args_complete = True if args_complete == "True" else False
arg_reduced = True if args.reduced == "True" else False
if arg_reduced:
print('Using reduced sets - 3 joins')
if args_complete:
print('Using complete Evaluation')
connection_string = args_db_string
run(query_path, save_path, connection_string, evaluation_strategy, query_eval_dict, args_complete, arg_reduced)
print("Finished Label Generation")