forked from vllm-project/llm-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_gpu_int8.py
76 lines (60 loc) · 2.11 KB
/
multi_gpu_int8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from datasets import load_dataset
from transformers import AutoTokenizer
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
MODEL_ID = "meta-llama/Meta-Llama-3-70B-Instruct"
SAVE_DIR = MODEL_ID.split("/")[1] + "-W8A8-Dynamic"
# 1) Load model (device_map="auto" with shard the model over multiple GPUs!).
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# 2) Prepare calibration dataset (in this case, we use ultrachat).
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 1024
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# 3) Configure algorithms. In this case, we:
# * quantize the weights to int8 with GPTQ (static per channel)
# * quantize the activations to int8 (dynamic per token)
recipe = [
GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head"]),
]
# 4) Apply algorithms and save in `compressed-tensors` format.
# if you encounter GPU out-of-memory issues, consider using an explicit
# device map (see multi_gpus_int8_device_map.py)
oneshot(
model=model,
tokenizer=tokenizer,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
output_dir=SAVE_DIR,
)