-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvaluatingPasses.py
244 lines (207 loc) · 8.17 KB
/
EvaluatingPasses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 20 16:36:04 2021
@author: deanp
Evaluating Passes
This code closely follows that of David Sumpter's xG model code in the following
repo:
"""
#%%
import pandas as pd
import numpy as np
import json
import FCPython
import matplotlib.pyplot as plt
#%%
#Load Data (Premier League 2017-2018)
with open('C:/Users/deanp/OneDrive/Desktop/Football Analytics/Modelling Football Course/Data/Wyscout/events_England.json') as f:
data_england = json.load(f)
#Load Data (La Liga 2017-2018)
with open('C:/Users/deanp/OneDrive/Desktop/Football Analytics/Modelling Football Course/Data/Wyscout/events_Spain.json') as f:
data_spain = json.load(f)
#Load Data (World Cup 2018)
with open('C:/Users/deanp/OneDrive/Desktop/Football Analytics/Modelling Football Course/Data/Wyscout/events_World_Cup.json') as f:
data_wc = json.load(f)
#%%
#Create a data set of passes
df_england = pd.DataFrame(data_england)
df_spain = pd.DataFrame(data_spain)
df_wc = pd.DataFrame(data_wc)
#%%
def clean_data(df):
pd.unique(df['subEventName'])
passes=df[df['eventName'] == 'Pass']
#Filter out Head passes, Launches
passes=passes[passes['subEventName'] != 'Launch']
return passes
#%%
england_passes = clean_data(df_england)
spain_passes = clean_data(df_spain)
wc_passes = clean_data(df_wc)
#%%
#Set up models
pass_model_england=pd.DataFrame(columns=['Success','X start','Y start'])
pass_model_spain=pd.DataFrame(columns=['Success','X start','Y start'])
pass_model_wc=pd.DataFrame(columns=['Success','X start','Y start'])
#%%
def add_features(pass_model, passes):
passes_dict = passes.to_dict('records')
i = 0
for pass_made in passes_dict:
pass_model.at[i,'X start']=100-pass_made['positions'][0]['x']
pass_model.at[i,'Y start']=pass_made['positions'][0]['y']
pass_model.at[i,'C']=abs(pass_made['positions'][0]['y']-50)
x=pass_model.at[i,'X start']*105/100
y=pass_model.at[i,'C']*65/100
pass_model.at[i,'Distance']=np.sqrt(x**2 + y**2)
#Was it successful?
pass_model.at[i,'Success']=0
if pass_made['tags'][0]['id']==1801:
pass_model.at[i,'Success']=1
i += 1
return pass_model
#%%
pass_model_england = add_features(pass_model_england, england_passes)
#%%
pass_model_spain = add_features(pass_model_spain, spain_passes)
#%%
pass_model_wc = add_features(pass_model_wc, wc_passes)
#%%
#Visualizing proportion of successful to unsuccessful passes
def donut_successful_vs_unsuccessful(pass_model):
num_success = len(pass_model[pass_model['Success'] == 1])
num_not_success = len(pass_model) - num_success
# create data
names = ['Successful', 'Unsuccessful']
sizes = np.array([num_success, num_not_success])
# Create a circle at the center of the plot
my_circle = plt.Circle( (0,0), 0.7, color='white')
# Give color names
plt.pie(sizes, labels=names, colors=['#567899', '#98A9BA'])
p = plt.gcf()
p.gca().add_artist(my_circle)
# Show the graph
plt.show()
return plt
#%%
donut_successful_vs_unsuccessful(pass_model_england)
donut_successful_vs_unsuccessful(pass_model_spain)
donut_successful_vs_unsuccessful(pass_model_wc)
#%%
#produce 2D histogram for heat map
def create_histogram(pass_model):
H_pass=np.histogram2d(pass_model['X start'], pass_model['Y start'],bins=50,range=[[0, 100],[0, 100]])
successful_passes_only=pass_model[pass_model['Success']==1]
H_successful_pass=np.histogram2d(successful_passes_only['X start'], successful_passes_only['Y start'],bins=50,range=[[0, 100],[0, 100]])
return H_pass, H_successful_pass
#%%
#2D histograms
H_pass_ENG, H_success_ENG = create_histogram(pass_model_england)
H_pass_ESP, H_success_ESP = create_histogram(pass_model_spain)
H_pass_WC, H_success_WC = create_histogram(pass_model_wc)
#%%
def plot_heatmap_passes(H_pass, country, attempted_or_successful):
(fig,ax) = FCPython.createGoalMouth()
pos=ax.imshow(H_pass[0], extent=[-1,66,104,-1], aspect='auto',cmap=plt.cm.Reds)
fig.colorbar(pos, ax=ax)
ax.set_title(country + ': Number of Passes ' + attempted_or_successful)
plt.xlim((-1,66))
plt.ylim((-3,35))
plt.tight_layout()
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
fig.savefig('C:/Users/deanp/OneDrive/Desktop/Football Analytics/Output/NumPasses' + country + '.png', dpi=200, bbox_inches='tight')
return fig, ax
#%%
#plot passes attempted, successful passes
plot_heatmap_passes(H_pass_ENG, "ENG", "Attempted")
plot_heatmap_passes(H_success_ENG, "ENG", "Successful")
plot_heatmap_passes(H_pass_ESP, "ESP", "Attempted")
plot_heatmap_passes(H_success_ESP, "ESP", "Successful")
plot_heatmap_passes(H_pass_WC, "WC2018", "Attempted")
plot_heatmap_passes(H_success_WC, "WC2018", "Successful")
#%%
#Plot a logistic curve
# b=[3, -3]
# x=np.arange(5,step=0.1)
# y=1/(1+np.exp(-b[0]-b[1]*x))
# fig,ax=plt.subplots(num=1)
# plt.ylim((-0.05,1.05))
# plt.xlim((0,5))
# ax.set_ylabel('y')
# ax.set_xlabel("x")
# ax.plot(x, y, linestyle='solid', color='black')
# ax.spines['top'].set_visible(False)
# ax.spines['right'].set_visible(False)
# plt.show()
#%%
#Function to Plot some column X of passes against successfulness
def plot_pass_success(pass_model, column_header, country):
fig,ax=plt.subplots(num=1)
ax.plot(pass_model[column_header], pass_model['Success'], linestyle='none', marker= '.', markerSize= 12, color='black')
ax.set_ylabel(country + ': Successful pass')
ax.set_xlabel("Pass " + column_header)
plt.ylim((-0.05,1.05))
ax.set_yticks([0,1])
ax.set_yticklabels(['No','Yes'])
plt.show()
return fig, ax
#%%
# plot distance vs success
plot_pass_success(pass_model_england, 'Distance', "ENG")
plot_pass_success(pass_model_spain, 'Distance', "ESP")
plot_pass_success(pass_model_wc, 'Distance', "WC2018")
#%%
def plot_distance_against_probabilitySuccess(pass_model, country, bins):
successful_passes_only=pass_model[pass_model['Success']==1]
passcount_dist=np.histogram(pass_model['Distance'],bins=bins,range=[0, 100])
successful_passcount_dist=np.histogram(successful_passes_only['Distance'],bins=bins,range=[0, 100])
prob_succesful_pass=np.divide(successful_passcount_dist[0],passcount_dist[0])
distance=passcount_dist[1]
middistance= (distance[:-1] + distance[1:])/2
fig,ax=plt.subplots(num=1)
ax.plot(middistance, prob_succesful_pass, linestyle='none', marker= '.', color='black')
ax.set_ylabel(country + ': Probability pass completed')
ax.set_xlabel("Distance from goal (metres)")
ax.set_yticks([0,0.2, 0.4, 0.6, 0.8, 1.0])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.show()
return fig, ax
#%%
plot_distance_against_probabilitySuccess(pass_model_england, "ENG", 60)
plot_distance_against_probabilitySuccess(pass_model_spain, "ESP", 60)
plot_distance_against_probabilitySuccess(pass_model_wc, "WC2018", 60)
#%%
#REGRESSION MODELS
import statsmodels.api as sm
import statsmodels.formula.api as smf
#%%
model_variables = ['Distance']
def create_model(model_variables, pass_model):
features=''
for v in model_variables[:-1]:
features = features + v + ' + '
features = features + model_variables[-1]
model = smf.glm(formula="Success ~ " + features, data=pass_model,
family=sm.families.Binomial()).fit()
return model
def get_model_params(model):
return model.params
eng_model = create_model(model_variables, pass_model_england)
b=get_model_params(eng_model)
#%%
#Return xSuccessPass value for more general model
def calculate_xSuccessfulPass(pass_):
bsum=b[0] #intercept
for i,v in enumerate(model_variables):
bsum=bsum+b[i+1]*pass_[v]
xSuccessPass = 1/(1+np.exp(bsum))
return xSuccessPass
#%%
#Add an xSuccessPass column to original dataframe
def add_xSuccessPass(model, pass_model):
xSuccessPass=pass_model.apply(calculate_xSuccessfulPass, axis=1)
pass_model = pass_model.assign(xSuccessPass=xSuccessPass)
return pass_model
#%%