forked from ZZZHANG-jx/DocRes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
221 lines (187 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import cv2
import time
import random
import datetime
import argparse
import numpy as np
from tqdm import tqdm
from piq import ssim,psnr
from itertools import cycle
import torch
import torch.nn as nn
from torch.utils import data
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from utils import dict2string,mkdir,get_lr,torch2cvimg,second2hours
from loaders import docres_loader
from models import restormer_arch
def seed_torch(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
#torch.use_deterministic_algorithms(True)
# seed_torch()
def getBasecoord(h,w):
base_coord0 = np.tile(np.arange(h).reshape(h,1),(1,w)).astype(np.float32)
base_coord1 = np.tile(np.arange(w).reshape(1,w),(h,1)).astype(np.float32)
base_coord = np.concatenate((np.expand_dims(base_coord1,-1),np.expand_dims(base_coord0,-1)),-1)
return base_coord
def train(args):
## DDP init
dist.init_process_group(backend='nccl',init_method='env://',timeout=datetime.timedelta(seconds=36000))
torch.cuda.set_device(args.local_rank)
device = torch.device('cuda',args.local_rank)
torch.cuda.manual_seed_all(42)
### Log file:
mkdir(args.logdir)
mkdir(os.path.join(args.logdir,args.experiment_name))
log_file_path=os.path.join(args.logdir,args.experiment_name,'log.txt')
log_file=open(log_file_path,'a')
log_file.write('\n--------------- '+args.experiment_name+' ---------------\n')
log_file.close()
### Setup tensorboard for visualization
if args.tboard:
writer = SummaryWriter(os.path.join(args.logdir,args.experiment_name,'runs'),args.experiment_name)
### Setup Dataloader
datasets_setting = [
{'task':'deblurring','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/deblurring/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/deblurring/tdd/train.json']},
{'task':'dewarping','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/dewarping/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/dewarping/doc3d/train_1_19.json']},
{'task':'binarization','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/binarization/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/binarization/train.json']},
{'task':'deshadowing','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/deshadowing/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/deshadowing/train.json']},
{'task':'appearance','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/appearance/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/appearance/trainv2.json']}
]
ratios = [dataset_setting['ratio'] for dataset_setting in datasets_setting]
datasets = [docres_loader.DocResTrainDataset(dataset=dataset_setting,img_size=args.im_size) for dataset_setting in datasets_setting]
trainloaders = [{'task':datasets_setting[i],'loader':data.DataLoader(dataset=datasets[i], sampler=DistributedSampler(datasets[i]), batch_size=args.batch_size, num_workers=2, pin_memory=True,drop_last=True),'iter_loader':iter(data.DataLoader(dataset=datasets[i], sampler=DistributedSampler(datasets[i]), batch_size=args.batch_size, num_workers=2, pin_memory=True,drop_last=True))} for i in range(len(datasets))]
### test loader
# for i in tqdm(range(args.total_iter)):
# loader_index = random.choices(list(range(len(trainloaders))),ratios)[0]
# in_im,gt_im = next(trainloaders[loader_index]['iter_loader'])
### Setup Model
model = restormer_arch.Restormer(
inp_channels=6,
out_channels=3,
dim = 48,
num_blocks = [2,3,3,4],
num_refinement_blocks = 4,
heads = [1,2,4,8],
ffn_expansion_factor = 2.66,
bias = False,
LayerNorm_type = 'WithBias',
dual_pixel_task = True
)
model=DDP(model.cuda(),device_ids=[args.local_rank],output_device=args.local_rank)
### Optimizer
optimizer= torch.optim.AdamW(model.parameters(),lr=args.l_rate,weight_decay=5e-4)
### LR Scheduler
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.total_iter, eta_min=1e-6, last_epoch=-1)
### load checkpoint
iter_start=0
if args.resume is not None:
print("Loading model and optimizer from checkpoint '{}'".format(args.resume))
x = checkpoint['model_state']
model.load_state_dict(x,strict=False)
iter_start=checkpoint['iter']
print("Loaded checkpoint '{}' (iter {})".format(args.resume, iter_start))
###-----------------------------------------Training-----------------------------------------
##initialize
scaler = torch.cuda.amp.GradScaler()
loss_dict = {}
total_step = 0
l2 = nn.MSELoss()
l1 = nn.L1Loss()
ce = nn.CrossEntropyLoss()
bce = nn.BCEWithLogitsLoss()
m = nn.Sigmoid()
best = 0
best_ce = 999
## total_steps
for iters in range(iter_start,args.total_iter):
start_time = time.time()
loader_index = random.choices(list(range(len(trainloaders))),ratios)[0]
try:
in_im,gt_im = next(trainloaders[loader_index]['iter_loader'])
except StopIteration:
trainloaders[loader_index]['iter_loader']=iter(trainloaders[loader_index]['loader'])
in_im,gt_im = next(trainloaders[loader_index]['iter_loader'])
in_im = in_im.float().cuda()
gt_im = gt_im.float().cuda()
binarization_loss,appearance_loss,dewarping_loss,deblurring_loss,deshadowing_loss = 0,0,0,0,0
with torch.cuda.amp.autocast():
pred_im = model(in_im,trainloaders[loader_index]['task']['task'])
if trainloaders[loader_index]['task']['task'] == 'binarization':
gt_im = gt_im.long()
binarization_loss = ce(pred_im[:,:2,:,:], gt_im[:,0,:,:])
loss = binarization_loss
elif trainloaders[loader_index]['task']['task'] == 'dewarping':
dewarping_loss = l1(pred_im[:,:2,:,:], gt_im[:,:2,:,:])
loss = dewarping_loss
elif trainloaders[loader_index]['task']['task'] == 'appearance':
appearance_loss = l1(pred_im, gt_im)
loss = appearance_loss
elif trainloaders[loader_index]['task']['task'] == 'deblurring':
deblurring_loss = l1(pred_im, gt_im)
loss = deblurring_loss
elif trainloaders[loader_index]['task']['task'] == 'deshadowing':
deshadowing_loss = l1(pred_im, gt_im)
loss = deshadowing_loss
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
loss_dict['dew_loss']=dewarping_loss.item() if isinstance(dewarping_loss,torch.Tensor) else 0
loss_dict['app_loss']=appearance_loss.item() if isinstance(appearance_loss,torch.Tensor) else 0
loss_dict['des_loss']=deshadowing_loss.item() if isinstance(deshadowing_loss,torch.Tensor) else 0
loss_dict['deb_loss']=deblurring_loss.item() if isinstance(deblurring_loss,torch.Tensor) else 0
loss_dict['bin_loss']=binarization_loss.item() if isinstance(binarization_loss,torch.Tensor) else 0
end_time = time.time()
duration = end_time-start_time
## log
if (iters+1) % 10 == 0:
## print
print('iters [{}/{}] -- '.format(iters+1,args.total_iter)+dict2string(loss_dict)+' --lr {:6f}'.format(get_lr(optimizer))+' -- time {}'.format(second2hours(duration*(args.total_iter-iters))))
## tbord
if args.tboard:
for key,value in loss_dict.items():
writer.add_scalar('Train '+key+'/Iterations', value, total_step)
## logfile
with open(log_file_path,'a') as f:
f.write('iters [{}/{}] -- '.format(iters+1,args.total_iter)+dict2string(loss_dict)+' --lr {:6f}'.format(get_lr(optimizer))+' -- time {}'.format(second2hours(duration*(args.total_iter-iters)))+'\n')
if (iters+1) % 5000 == 0:
state = {'iters': iters+1,
'model_state': model.state_dict(),
'optimizer_state' : optimizer.state_dict(),}
if not os.path.exists(os.path.join(args.logdir,args.experiment_name)):
os.system('mkdir ' + os.path.join(args.logdir,args.experiment_name))
if torch.distributed.get_rank()==0:
torch.save(state, os.path.join(args.logdir,args.experiment_name,"{}.pkl".format(iters+1)))
sched.step()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--im_size', nargs='?', type=int, default=256,
help='Height of the input image')
parser.add_argument('--total_iter', nargs='?', type=int, default=100000,
help='# of the epochs')
parser.add_argument('--batch_size', nargs='?', type=int, default=10,
help='Batch Size')
parser.add_argument('--l_rate', nargs='?', type=float, default=2e-4,
help='Learning Rate')
parser.add_argument('--resume', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--logdir', nargs='?', type=str, default='./checkpoints/',
help='Path to store the loss logs')
parser.add_argument('--tboard', dest='tboard', action='store_true',
help='Enable visualization(s) on tensorboard | False by default')
parser.add_argument('--local_rank',type=int,default=0,metavar='N')
parser.add_argument('--experiment_name', nargs='?', type=str,default='experiment_name',
help='the name of this experiment')
parser.set_defaults(tboard=False)
args = parser.parse_args()
train(args)