-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNAMESPACE
205 lines (177 loc) · 6.27 KB
/
NAMESPACE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
useDynLib(robustbase, .registration=TRUE)
if(FALSE) {##MM
stopifnot(require(codetoolsBioC), require(robustbase))
findExternalDeps("robustbase")
}
importFrom("grDevices", dev.interactive, extendrange)
importFrom("graphics",
abline, axis,
box, legend, lines, matplot, mtext,
panel.smooth, par, plot, points, strheight, text, title)
importFrom("stats", .lm.fit,
aggregate, alias, as.formula, binomial,
confint.lm, dummy.coef.lm, # want to register these as S3 {confint}{lmrob} and {dummy.coef}{..}
coef, cor, cov, cov.wt, cov2cor, delete.response, deviance, dnorm, dpois,
family, fitted, fivenum, formula,
gaussian, glm, glm.fit, hatvalues,
integrate, is.empty.model, lm.fit, lm.wfit,
mad, mahalanobis, median, model.frame, model.matrix, model.matrix.lm,
model.offset, model.response, model.weights,
na.fail, na.omit, na.pass, napredict, naprint, naresid,
nlminb, nls, nls.control, nobs,
optim, optimize, pbinom, pchisq, pf, pgamma, pnorm, poisson, ppois,
predict, printCoefmat, pt,
qchisq, qnorm, qpois, qqline, qqnorm, qt, quantile,
resid, residuals, residuals.lm, setNames, splinefun, symnum,
terms, uniroot, var, vcov, weights, .checkMFClasses, .getXlevels,
## S3 generics (*not* shown yet by findExternalDeps() above):
anova, case.names, confint,
dummy.coef, logLik, profile, variable.names
)
## ^^^^ MASS has a bit more; take it as example
if(getRversion() >= "3.3.0") {
importFrom("stats", sigma)
} else {
export(sigma)
S3method(sigma, nls)
}
importFrom("utils", globalVariables, str)
## MASS has many rlm S3 methods; should we use some of them - for rnls() ?!
## we also currently use MASS::cov.rob(); but probably only temporarily
importFrom("methods", is, new, setClass, setMethod, slot, "slot<-",
## needed, e.g. for 'robustlmm' to work w/o warning:
as, "as<-", coerce, "coerce<-")
importFrom("DEoptimR", JDEoptim)
## Functions defined in this package
export(Sn, Qn, Qn.old,
s_Sn, s_Qn, s_mad, s_IQR,
summarizeRobWeights,
wgt.himedian,
h.alpha.n,
covMcd, .MCDcons, .MCDcnp2, .MCDcnp2.rew, .MCDsingularityMsg,
robMD, mahalanobisD, # <- still "internal"
ltsReg,
tolEllipsePlot,
## RENAME ?!? :
covPlot, ltsPlot,
## NO! ddplot, distplot, chi2qqplot
rrcov.control,## << RENAME --- FIXME
huberM,
huberize,
colMedians, rowMedians,
covOGK, covGK, hard.rejection, scaleTau2,
covComed,
## comedian, COM, -- not yet
smoothWgt, .wgtFUN.covMcd, .wgtFUN.covComed,
psiFunc, huberPsi, hampelPsi,
## Not yet:
## tukeyPsi, # = biweight / bisquare
tukeyChi, tukeyPsi1, # TODO deprecate: see ./TODO
Mpsi, Mchi, Mwgt, MrhoInf, .Mpsi, .Mchi, .Mwgt, .MrhoInf,
.Mwgt.psi1,
.Mchi.tuning.default, .Mpsi.tuning.default, .regularize.Mpsi,
.Mchi.tuning.defaults, .Mpsi.tuning.defaults,
.psi2ipsi, .psi.const, .psi.ggw.findc, .psi.lqq.findc,
lmrob, lmrob.fit,
lmrob.fit.MM, lmrob..M..fit, lmrob..D..fit,
lmrob.S, lmrob.lar, lmrob.M.S,
lmrob.control,
.lmrob.hat, # was lmrob.leverages()
splitFrame,
outlierStats,
mc, # Mia Hubers's medcouple
lmc, rmc, # left and right mc, robust measures of tail weight
adjbox,
adjboxStats,
adjOutlyingness,
fullRank,
glmrob,
nlrob, nlrob.control
, glmrobMqle.control, glmrobBY.control, glmrobMT.control
, BYlogreg ## R/BYlogreg.R FIXME: add to glmrob() and "deprecate"
## , glmrobMT ## R/MTestimador2.R
, estimethod
## related to detMCD() and to be used in rrcov etc:
, r6pack, doScale
, rankMM, classPC, .signflip
)
## S3 methods for ``our own'' S3 generics:
S3method(ltsReg, default)
S3method(ltsReg, formula)
S3method(adjbox, default)
S3method(adjbox, formula)
## Register all the methods for S3 generics elsewhere
## in case namespace is loaded but not currently attached.
S3method(anova, lmrob)
S3method(anova, glmrob)
S3method(alias, lmrob)
S3method(case.names, lmrob)
S3method(confint, lmrob, confint.lm)## -> R bug (see below) & in R/lmrob.R
S3method(confint, nlrob)
S3method(dummy.coef, lmrob, dummy.coef.lm)# (R bug ...)
S3method(estimethod, nlrob)
S3method(family, lmrob)
S3method(hatvalues, lmrob)
S3method(kappa, lmrob)
S3method(labels, lmrob)
S3method(model.matrix, lmrob)
S3method(nobs, lmrob)
S3method(nobs, lmrob.S, nobs.lmrob)# use the same as "lmrob"
S3method(nobs, mcd)
S3method(residuals, lmrob)
S3method(residuals, lmrob.S)
S3method(variable.names, lmrob)
S3method(print, lmrobCtrl)
S3method(update, lmrobCtrl)
## R Bug {fixed in svn rev 84463}: needs within.list in our NS:
S3method(within, lmrobCtrl, within.list)
S3method(weights, glmrob)
S3method(weights, lmrob)
S3method(weights, lmrob.S, weights.lmrob)# use the same as "lmrob"
S3method(weights, nlrob, weights.lmrob)# use the same as "lmrob"
S3method(formula, nlrob)
S3method(fitted, nlrob)
S3method(plot, lts)
S3method(plot, mcd)
S3method(plot, lmrob)
S3method(predict, lmrob)
S3method(predict, glmrob)
S3method(predict, nlrob)
S3method(print, glmrob)
S3method(print, lts)
S3method(print, mcd)
S3method(print, nlrob)
S3method(print, lmrob)
S3method(print, lmrob.S)
S3method(print, summary.glmrob)
S3method(print, summary.lmrob)
S3method(print, summary.nlrob)
S3method(print, summary.lts)
S3method(qr, lmrob)
## lmrob uses residuals.default
S3method(residuals, nlrob)
S3method(residuals, glmrob)
S3method(summary, glmrob)
S3method(summary, lmrob)
S3method(summary, lts)
S3method(summary, mcd)
S3method(summary, nlrob)
S3method(sigma, lmrob)
S3method(sigma, nlrob)
S3method(vcov, glmrob)
S3method(vcov, lmrob)
S3method(vcov, nlrob)
S3method(print, summary.mcd)
## S4 Generics {only those defined in this package}:
export(
chgDefaults
)
exportClasses(
"functionX", # function(x, <tune_par>): VECTORIZED in 'x'
"functionXal", # a functional: function of tuning par.s only
"psi_func" # containing rho(), psi(), psi'(), ...
)
exportMethods(
chgDefaults,
plot
)