This folder contains 3 demo applications built with Spark and DJL to run image related tasks.
- ImageClassificationExample: Ready to run for image classification using built in model from Model URL
- ObjectDetectionExample: Ready to run for object detection using built in model from Model URL
- SemanticSegmentationExample: Ready to run for semantic segmentation using built in model from Model URL
We provide two options to build, you can choose to build with sbt
or gradle
.
libraryDependencies += "ai.djl.spark" % "spark_2.12" % "0.30.0"
libraryDependencies += "ai.djl.pytorch" % "pytorch-engine" % "0.30.0"
libraryDependencies += "ai.djl.pytorch" % "pytorch-model-zoo" % "0.30.0"
libraryDependencies += "ai.djl.pytorch" % "pytorch-native-cpu-precxx11" % "2.4.0"
You should add these in dependencies
dependencies {
implementation platform("ai.djl:bom:${djl_version}")
implementation "ai.djl.spark:spark_2.12"
runtimeOnly "ai.djl.pytorch:pytorch-engine"
runtimeOnly "ai.djl.pytorch:pytorch-model-zoo"
runtimeOnly "ai.djl.pytorch:pytorch-native-cpu-precxx11"
}
Use spark-submit
to run the examples. For example, to run the image classification example, you can run:
spark-submit --class com.examples.ImageClassificationExample \
--master yarn \
--mode cluster \
--conf spark.executor.instances=2 \
--conf spark.executor.memory=2G \
--conf spark.executor.cores=2 \
--conf spark.driver.memory=1G \
--conf spark.driver.cores=1 \
build/libs/image-1.0-SNAPSHOT-all.jar