-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
86 lines (79 loc) · 2.71 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
def normalize(grid):
"""
Given a grid of unnormalized probabilities, computes the
correspond normalized version of that grid.
"""
total = 0.0
for row in grid:
for cell in row:
total += cell
for i,row in enumerate(grid):
for j,cell in enumerate(row):
grid[i][j] = float(cell) / total
return grid
def blur(grid, blurring):
"""
Spreads probability out on a grid using a 3x3 blurring window.
The blurring parameter controls how much of a belief spills out
into adjacent cells. If blurring is 0 this function will have
no effect.
"""
height = len(grid)
width = len(grid[0])
center_prob = 1.0-blurring
corner_prob = blurring / 12.0
adjacent_prob = blurring / 6.0
window = [
[corner_prob, adjacent_prob, corner_prob],
[adjacent_prob, center_prob, adjacent_prob],
[corner_prob, adjacent_prob, corner_prob]
]
new = [[0.0 for i in range(width)] for j in range(height)]
for i in range(height):
for j in range(width):
grid_val = grid[i][j]
for dx in range(-1,2):
for dy in range(-1,2):
mult = window[dx+1][dy+1]
new_i = (i + dy) % height
new_j = (j + dx) % width
new[new_i][new_j] += mult * grid_val
return normalize(new)
def is_robot_localized(beliefs, true_pos):
"""
Returns None if the robot has no "strong opininon" about
its belief. The robot has a strong opinion when the
size of it's best belief is greater than twice the size of
its second best belief.
If it DOES have a strong opinion then this function returns
True if that opinion is correct and False if it is not.
"""
best_belief = 0.0
best_pos = None
second_best = 0.0
for y, row in enumerate(beliefs):
for x, belief in enumerate(row):
if belief > best_belief:
second_best = best_belief
best_belief = belief
best_pos = (y,x)
elif belief > second_best:
second_best = belief
if second_best <= 0.00001 or best_belief / second_best > 2.0:
# robot thinks it knows where it is
localized = best_pos == true_pos
return localized, best_pos
else:
# No strong single best belief
return None, best_pos
def close_enough(g1, g2):
if len(g1) != len(g2):
return False
if len(g1) == 0 or len(g1[0]) != len(g2[0]):
return False
for r1, r2 in zip(g1,g2):
for v1, v2 in zip(r1, r2):
if abs(v1 - v2) > 0.001:
print(v1, v2)
return False
return True