-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.bib
340 lines (282 loc) · 13 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
%% Spherical CNNs
@inproceedings{defferrard2019deepsphereequiv,
title = {DeepSphere: towards an equivariant graph-based spherical CNN},
author = {Defferrard, Micha\"el and Perraudin, Nathana\"el and Kacprzak, Tomasz and Sgier, Raphael},
booktitle = {ICLR Workshop on Representation Learning on Graphs and Manifolds},
year = {2019},
url = {https://arxiv.org/abs/1904.05146},
}
@article{perraudin2019deepspherecosmo,
title = {DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications},
author = {Perraudin, Nathana\"el and Defferrard, Micha\"el and Kacprzak, Tomasz and Sgier, Raphael},
journal = {Astronomy and Computing},
year = {2019},
url = {https://arxiv.org/abs/1810.12186},
}
@inproceedings{khasanova2017sphericalcnn,
title = {Graph-based classification of omnidirectional images},
author = {Khasanova, Renata and Frossard, Pascal},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
year = {2017},
url = {https://arxiv.org/abs/1707.08301},
}
@inproceedings{cohen2018sphericalcnn,
title = {Spherical CNNs},
author = {Cohen, Taco S and Geiger, Mario and Koehler, Jonas and Welling, Max},
booktitle = {International Conference on Learning Representations (ICLR)},
year = {2018},
url = {https://arxiv.org/abs/1801.10130},
}
@inproceedings{esteves2018sphericalcnn,
title = {Learning SO(3) Equivariant Representations with Spherical CNNs},
author = {Esteves, Carlos and Allen-Blanchette, Christine and Makadia, Ameesh and Daniilidis, Kostas},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
year = {2018},
url = {https://arxiv.org/abs/1711.06721}
}
@inproceedings{boomsma2017sphericalcnn,
title = {Spherical convolutions and their application in molecular modelling},
author = {Boomsma, Wouter and Frellsen, Jes},
booktitle = {Advances in Neural Information Processing Systems},
year = {2017},
}
@inproceedings{su2017sphericalcnn,
title = {Learning spherical convolution for fast features from 360 imagery},
author = {Su, Yu-Chuan and Grauman, Kristen},
booktitle = {Advances in Neural Information Processing Systems},
year = {2017}
}
@inproceedings{coors2018sphericalcnn,
author = {Benjamin Coors and Alexandru Paul Condurache and Andreas Geiger},
title = {SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images},
booktitle = {European Conference on Computer Vision},
year = {2018}
}
% Not really a spherical CNN.
@article{schmelzle2017cosmological,
title = {Cosmological model discrimination with Deep Learning},
author = {Schmelzle, Jorit and Lucchi, Aurelien and Kacprzak, Tomasz and Amara, Adam and Sgier, Raphael and R{\'e}fr{\'e}gier, Alexandre and Hofmann, Thomas},
journal = {arXiv:1707.05167},
year = {2017}
}
@article{krachmalnicoff2019sphericalcnn,
title = {Convolutional Neural Networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis},
author = {Krachmalnicoff, Nicoletta and Tomasi, Maurizio},
journal = {arXiv:1902.04083},
year = {2019},
}
@inproceedings{jiang2019sphericalcnn,
title = {Spherical CNNs on Unstructured Grids},
author = {Jiang, Chiyu "Max" and Huang, Jingwei and Kashinath, Karthik and Prabhat and Marcus, Philip and Niessner, Matthias},
booktitle = {International Conference on Learning Representations (ICLR)},
year = {2019},
url = {https://arxiv.org/abs/1901.02039},
}
@inproceedings{cohen2019gauge,
title = {Gauge Equivariant Convolutional Networks and the Icosahedral CNN},
author = {Cohen, Taco S. and Weiler, Maurice and Kicanaoglu, Berkay and Welling, Max},
booktitle = {International Conference on Machine Learning (ICML)},
year = {2019},
url = {http://arxiv.org/abs/1902.04615},
}
%% Graph NNs
@article{bruna2013gnn,
title = {Spectral Networks and Locally Connected Networks on Graphs},
author = {Joan Bruna and Wojciech Zaremba and Arthur Szlam and Yann LeCun},
journal = {arXiv:1312.6203},
year = {2013},
url = {https://arxiv.org/abs/1312.6203},
}
@inproceedings{defferrard2016graphnn,
title = {Convolutional neural networks on graphs with fast localized spectral filtering},
author = {Defferrard, Micha{\"e}l and Bresson, Xavier and Vandergheynst, Pierre},
booktitle = {Advances in Neural Information Processing Systems},
year = {2016},
url = {https://arxiv.org/abs/1606.09375},
}
@inproceedings{boscaini2016anisotropicgraphnn,
title = {Learning shape correspondence with anisotropic convolutional neural networks},
author = {Boscaini, Davide and Masci, Jonathan and Rodol{\`a}, Emanuele and Bronstein, Michael},
booktitle = {Advances in Neural Information Processing Systems},
year = {2016},
}
@article{bronstein2017review,
title = {Geometric deep learning: going beyond euclidean data},
author = {Bronstein, Michael M and Bruna, Joan and LeCun, Yann and Szlam, Arthur and Vandergheynst, Pierre},
journal = {IEEE Signal Processing Magazine},
year = {2017},
}
%% NN stuff
@inproceedings{ioffe2015batchnorm,
title = {Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift},
author = {Ioffe, Sergey and Szegedy, Christian},
booktitle = {International Conference on Machine Learning},
year = {2015},
}
@article{kingma2014adam,
title = {Adam: A method for stochastic optimization},
author = {Kingma, Diederik P and Ba, Jimmy},
journal = {arXiv:1412.6980},
year = {2014},
}
%% Spherical sampling schemes
@article{gorski2005healpix,
title = {HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere},
author = {Gorski, Krzysztof M and Hivon, Eric and Banday, AJ and Wandelt, Benjamin D and Hansen, Frode K and Reinecke, Mstvos and Bartelmann, Matthia},
journal = {The Astrophysical Journal},
year = {2005},
}
@article{gorski1999healpixprimer,
title = {The healpix primer},
author = {Gorski, Krzysztof M and Wandelt, Benjamin D and Hansen, Frode K and Hivon, Eric and Banday, Anthony J},
journal = {arXiv preprint astro-ph/9905275},
year = {1999},
}
@article{baumgardner1985icosahedral,
title = {Icosahedral discretization of the two-sphere},
author = {Baumgardner, John R and Frederickson, Paul O},
journal = {SIAM Journal on Numerical Analysis},
year = {1985},
}
@article{driscoll1994fouriersphere,
title = {Computing Fourier Transforms and Convolutions on the 2-Sphere},
author = {Driscoll, J. R. and Healy, D. M.},
journal = {Adv. Appl. Math.},
year = {1994},
url = {http://dx.doi.org/10.1006/aama.1994.1008},
}
%% Convergence and equivariance
@book{shubin,
author = {Shubin, M. A.},
title = {Pseudodifferential operators and spectral theory},
publisher = {Springer-Verlag, Berlin},
year = {2001},
pages = {xii+288},
edition = {Second},
note = {Translated from the 1978 Russian original by Stig I. Andersson},
url = {http://dx.doi.org/10.1007/978-3-642-56579-3},
doi = {http://dx.doi.org/10.1007/978-3-642-56579-3}
}
@inproceedings{belkin2007convergence,
title = {Convergence of Laplacian eigenmaps},
author = {Belkin, Mikhail and Niyogi, Partha},
booktitle = {Advances in Neural Information Processing Systems},
year = {2007},
}
@article{belkin2005towards,
title = {Towards a theoretical foundation for Laplacian-based manifold methods},
author = {Belkin, Mikhail and Niyogi, Partha},
journal = {Journal of Computer and System Sciences},
year = {2008},
}
%% Data
@inproceedings{mudigonda2017climateevents,
title = {Segmenting and tracking extreme climate events using neural networks},
author = {Mudigonda, Mayur and Kim, Sookyung and Mahesh, Ankur and Kahou, Samira and Kashinath, Karthik and Williams, Dean and Michalski, Vincen and O’Brien, Travis and Prabhat, Mr},
booktitle = {Deep Learning for Physical Sciences (DLPS) Workshop, held with NIPS Conference},
year = {2017},
url = {https://dl4physicalsciences.github.io/files/nips_dlps_2017_20.pdf}
}
@article{planck2015overview,
title = {Planck 2015 results. I. Overview of products and scientific results},
author = {{Planck Collaboration}},
journal = {Astronomy \& Astrophysics},
year = {2016},
}
@inproceedings{shrec17,
title = {Large-scale 3D shape retrieval from ShapeNet Core55: SHREC'17 track},
author = {Savva, Manolis and Yu, Fisher and Su, Hao and Kanezaki, Asako and Furuya, Takahiko and Ohbuchi, Ryutarou and Zhou, Zhichao and Yu, Rui and Bai, Song and Bai, Xiang and others},
booktitle = {Eurographics Workshop on 3D Object Retrieval},
year = {2017},
}
@article{shapenet,
title = {Shapenet: An information-rich 3d model repository},
author = {Chang, Angel X and Funkhouser, Thomas and Guibas, Leonidas and Hanrahan, Pat and Huang, Qixing and Li, Zimo and Savarese, Silvio and Savva, Manolis and Song, Shuran and Su, Hao and others},
journal = {arXiv:1512.03012},
year = {2015},
}
% Cosmology
@article{schmelze2017cosmologicalmodel,
title = {Cosmological model discrimination with Deep Learning},
author = {{Schmelzle}, J. and {Lucchi}, A. and {Kacprzak}, T. and {Amara}, A. and {Sgier}, R. and {R{\'e}fr{\'e}gier}, A. and {Hofmann}, T.},
journal = {arxiv:1707.05167},
year = {2017},
}
@article{bartelman2010gravitationallensing,
title = {Gravitational lensing},
author = {{Bartelmann}, M.},
journal = {Classical and Quantum Gravity},
year = {2010},
}
% Software
@misc{pygsp,
title = {PyGSP: Graph Signal Processing in Python},
author = {Defferrard, Micha\"el and Martin, Lionel and Pena, Rodrigo and Perraudin, Nathana\"el},
doi = {10.5281/zenodo.1003157},
url = {https://github.com/epfl-lts2/pygsp/},
}
@article{scipy,
author = {{Virtanen}, Pauli and {Gommers}, Ralf and {Oliphant},
Travis E. and {Haberland}, Matt and {Reddy}, Tyler and
{Cournapeau}, David and {Burovski}, Evgeni and {Peterson}, Pearu
and {Weckesser}, Warren and {Bright}, Jonathan and {van der Walt},
St{\'e}fan J. and {Brett}, Matthew and {Wilson}, Joshua and
{Jarrod Millman}, K. and {Mayorov}, Nikolay and {Nelson}, Andrew
R.~J. and {Jones}, Eric and {Kern}, Robert and {Larson}, Eric and
{Carey}, CJ and {Polat}, {\.I}lhan and {Feng}, Yu and {Moore},
Eric W. and {Vand erPlas}, Jake and {Laxalde}, Denis and
{Perktold}, Josef and {Cimrman}, Robert and {Henriksen}, Ian and
{Quintero}, E.~A. and {Harris}, Charles R and {Archibald}, Anne M.
and {Ribeiro}, Ant{\^o}nio H. and {Pedregosa}, Fabian and
{van Mulbregt}, Paul and {Contributors}, SciPy 1. 0},
title = "{SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python}",
journal = {Nature Methods},
year = "2020",
adsurl = {https://rdcu.be/b08Wh},
doi = {https://doi.org/10.1038/s41592-019-0686-2},
}
@article{numpy,
title={The NumPy array: a structure for efficient numerical computation},
author={Walt, St{\'e}fan van der and Colbert, S Chris and Varoquaux, Gael},
journal={Computing in Science \& Engineering},
volume={13},
number={2},
pages={22--30},
year={2011},
publisher={IEEE Computer Society},
}
@misc{tensorflow,
title={{TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={https://www.tensorflow.org/},
note={Software available from tensorflow.org},
author={Mart\'{\i}n~Abadi and Ashish~Agarwal and Paul~Barham and Eugene~Brevdo and Zhifeng~Chen and Craig~Citro and Greg~S.~Corrado and Andy~Davis and Jeffrey~Dean and Matthieu~Devin and Sanjay~Ghemawat and Ian~Goodfellow and Andrew~Harp and Geoffrey~Irving and Michael~Isard and Yangqing Jia and Rafal~Jozefowicz and Lukasz~Kaiser and Manjunath~Kudlur and Josh~Levenberg and Dandelion~Man\'{e} and Rajat~Monga and Sherry~Moore and Derek~Murray and Chris~Olah and Mike~Schuster and Jonathon~Shlens and Benoit~Steiner and Ilya~Sutskever and Kunal~Talwar and Paul~Tucker and Vincent~Vanhoucke and Vijay~Vasudevan and Fernanda~Vi\'{e}gas and Oriol~Vinyals and Pete~Warden and Martin~Wattenberg and Martin~Wicke and Yuan~Yu and Xiaoqiang~Zheng},
year={2015},
}
@article{matplotlib,
Author = {Hunter, J. D.},
Title = {Matplotlib: A 2D graphics environment},
Journal = {Computing in Science \& Engineering},
Volume = {9},
Number = {3},
Pages = {90--95},
abstract = {Matplotlib is a 2D graphics package used for Python for
application development, interactive scripting, and publication-quality
image generation across user interfaces and operating systems.},
publisher = {IEEE COMPUTER SOC},
doi = {10.1109/MCSE.2007.55},
year = 2007,
}
@article{healpy,
doi = {10.21105/joss.01298},
url = {https://doi.org/10.21105/joss.01298},
year = {2019},
month = mar,
publisher = {The Open Journal},
volume = {4},
number = {35},
pages = {1298},
author = {Andrea Zonca and Leo Singer and Daniel Lenz and Martin Reinecke and Cyrille Rosset and Eric Hivon and Krzysztof Gorski},
title = {healpy: equal area pixelization and spherical harmonics transforms for data on the sphere in Python},
journal = {Journal of Open Source Software},
}