-
Notifications
You must be signed in to change notification settings - Fork 11
/
policies.py
294 lines (262 loc) · 13.4 KB
/
policies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from collections import defaultdict
from math import log
from online_logistic_regression import OnlineLogisticRegression
from scipy.special import expit
from scipy.optimize import minimize
import numpy as np
# SOME COMMENTS ON THE IMPLEMENTATION OF A "CASCADING BROWSING BEHAVIOUR"
#
# Implementing actual cascade-based browsing user behaviours can be tricky.
# Throughout these offline simulations, we made the following implementation choices:
#
# - Users browse the carousel from left to right. If a user clicked and streamed a playlist
# at rank r with 1 <= r <= n_recos, he/she stops browsing and all playlists from ranks
# r+1 to n_recos are considered as "unseen" and corresponding arms are not updated.
#
# - Moreover, as users can be drawn several times in the batch of a same round, a same user can
# have several "browsing sessions" during a same round. Therefore, each user can have several positive
# rewards - i.e. stream several playlists - in a same round, consistently with our multiple-plays framework.
#
# - In the below classes, we shuffle the first L_init playlists, capturing the fact that they are all
# initially visible on the user's screen (and thus the aforementioned "left-to-right" browsing
# behaviour is not relevant). Note: overall, adding this shuffle does not impact performances.
#
# - We consider that a user (from a selected batch) that did not stream any playlist (all rewards = 0)
# only saw the L_init first ones. Arms of playlists positioned further in the carousel are not updated.
# Abstract class defining the minimal functions that need
# to be implemented to create new bandit policy classes
class Policy:
# Returns a list of size n_recos of playlist ids
def recommend_to_users_batch(self, batch_users, n_recos=12):
return
# Updates policies parameters
def update_policy(self, user_ids, recos , rewards):
return
# A simple baseline that randomly recommends n_recos playlists to each user.
class RandomPolicy(Policy):
def __init__(self, n_playlists, cascade_model=True):
self.cascade_model = cascade_model
self.n_playlists = n_playlists
def recommend_to_users_batch(self, batch_users, n_recos=12, l_init=3):
n_users = len(batch_users)
recos = np.zeros((n_users, n_recos), dtype=np.int64)
r = np.arange(self.n_playlists)
for i in range(n_users):
np.random.shuffle(r)
recos[i] = r[:n_recos]
return recos
def update_policy(self, user_ids, recos, rewards, l_init=3):
return
# Upper Confidence Bound (UCB) strategy, using KL-UCB bounds [Garivier and Cappe, 2011] tailored for Bernoulli rewards
class KLUCBSegmentPolicy(Policy):
def __init__(self, user_segment, n_playlists, precision = 1e-6, eps = 1e-15, cascade_model=True):
self.user_segment = user_segment
n_segments = len(np.unique(self.user_segment))
self.playlist_display = np.zeros((n_segments, n_playlists))
self.playlist_success = np.zeros((n_segments, n_playlists))
self.playlist_score = np.ones((n_segments, n_playlists))
self.t = 0
self.cascade_model = cascade_model
self.precision = precision
self.eps = eps
def recommend_to_users_batch(self, batch_users, n_recos=12, l_init=3):
user_segment = np.take(self.user_segment, batch_users)
user_score = np.take(self.playlist_score, user_segment, axis = 0)
# Break ties
user_random_score = np.random.random(user_score.shape)
user_choice = np.lexsort((user_random_score, -user_score))[:, :n_recos]
# Shuffle l_init first slots
np.random.shuffle(user_choice[0:l_init])
return user_choice
def kl(self, x, y):
x = min(max(x, self.eps), 1 - self.eps)
y = min(max(y, self.eps), 1 - self.eps)
return x * log(x / y) + (1 - x) * log((1 - x) / (1 - y))
def scoring_function(self, n_success, n, t):
if n == 0:
return 1.0
p = n_success / n
value = p
u = 1
threshold = log(t) / n
_count_iteration = 0
while _count_iteration < 50 and u - value > self.precision:
_count_iteration += 1
m = (value + u) * 0.5
if self.kl(p, m) > threshold:
u = m
else:
value = m
return (value + u) * 0.5
def update_policy(self, user_ids, recos, rewards, l_init=3):
batch_size = len(user_ids)
modified_data = defaultdict(set)
for i in range(batch_size):
user_segment = self.user_segment[user_ids[i]]
total_stream = len(rewards[i].nonzero())
nb_display = 0
for p, r in zip(recos[i], rewards[i]):
nb_display +=1
modified_data[user_segment].add(p)
self.playlist_success[user_segment][p]+=r
self.playlist_display[user_segment][p]+=1
if self.cascade_model and ((total_stream == 0 and nb_display == l_init) or (r == 1)):
break
self.t = self.playlist_display.sum()
for seg,pls in modified_data.items():
for pl in pls:
self.playlist_score[seg][pl] = self.scoring_function(self.playlist_success[seg][pl], self.playlist_display[seg][pl], self.t)
return
# An Explore-then-Commit strategy: similar to random until each playlist has been displayed n times or more,
# then recommends the top n_reco playlists with highest mean observed rewards, for each segment
class ExploreThenCommitSegmentPolicy(Policy):
def __init__(self, user_segment, n_playlists, min_n, cascade_model=True):
self.user_segment = user_segment
n_segments = len(np.unique(self.user_segment))
self.playlist_display = np.zeros((n_segments, n_playlists))
self.playlist_success = np.zeros((n_segments, n_playlists))
self.min_n = min_n
self.cascade_model = cascade_model
def recommend_to_users_batch(self, batch_users, n_recos=12, l_init=3):
user_segment = np.take(self.user_segment, batch_users)
user_success = np.take(self.playlist_success, user_segment, axis = 0)
user_displays = np.take(self.playlist_display, user_segment, axis = 0).astype(float)
user_random_score = np.random.random(user_displays.shape)
user_score = np.divide(user_success, user_displays, out=np.zeros_like(user_displays), where=user_displays!=0)
discounted_displays = np.maximum(np.zeros_like(user_displays), self.min_n - user_displays)
user_choice = np.lexsort((user_random_score, - user_score, -discounted_displays))[:, :n_recos]
# Shuffle l_init first slots
np.random.shuffle(user_choice[0:l_init])
return user_choice
def update_policy(self, user_ids, recos , rewards, l_init=3):
batch_size = len(user_ids)
for i in range(batch_size):
user_segment = self.user_segment[user_ids[i]]
total_stream = len(rewards[i].nonzero())
nb_display = 0
for p, r in zip(recos[i], rewards[i]):
nb_display +=1
self.playlist_success[user_segment][p]+=r
self.playlist_display[user_segment][p]+=1
if self.cascade_model and ((total_stream == 0 and nb_display == l_init) or (r == 1)):
break
return
# Segment-based Epsilon-Greedy strategy: recommends playlists randomly with probability epsilon,
# otherwise recommends the top n_recos with highest mean observed rewards.
class EpsilonGreedySegmentPolicy(Policy):
def __init__(self, user_segment, n_playlists, epsilon, cascade_model=True):
self.user_segment = user_segment
n_segments = len(np.unique(self.user_segment))
self.playlist_display = np.zeros((n_segments, n_playlists))
self.playlist_success = np.zeros((n_segments, n_playlists))
self.playlist_score = np.ones((n_segments, n_playlists))
self.epsilon = epsilon
self.cascade_model = cascade_model
def recommend_to_users_batch(self, batch_users, n_recos=12, l_init=3):
user_segment = np.take(self.user_segment, batch_users)
user_scores = np.take(self.playlist_score, user_segment, axis = 0)
user_random_score = np.random.random(user_scores.shape)
n_users = len(batch_users)
user_greedy = np.random.binomial(1, [1- self.epsilon for i in range(n_users)])
new_scores = user_scores * user_greedy[:,np.newaxis]
user_choice = np.lexsort((user_random_score, -new_scores))[:, :n_recos]
# Shuffle l_init first slots
np.random.shuffle(user_choice[0:l_init])
return user_choice
def update_policy(self, user_ids, recos, rewards, l_init=3):
batch_size = len(user_ids)
for i in range(batch_size):
user_segment = self.user_segment[user_ids[i]]
total_stream = len(rewards[i].nonzero())
nb_display = 0
for p, r in zip(recos[i], rewards[i]):
nb_display +=1
self.playlist_success[user_segment][p]+=r
self.playlist_display[user_segment][p]+=1
self.playlist_score[user_segment][p] = self.playlist_success[user_segment][p] / self.playlist_display[user_segment][p]
if self.cascade_model and ((total_stream == 0 and nb_display == l_init) or (r == 1)):
break
return
# Segment-based Thompson Sampling strategy, with Beta(alpha_zero,beta_zero) priors
class TSSegmentPolicy(Policy):
def __init__(self, user_segment, n_playlists, alpha_zero=1, beta_zero=99, cascade_model=True):
self.user_segment = user_segment
n_segments = len(np.unique(self.user_segment))
self.playlist_display = np.zeros((n_segments, n_playlists))
self.playlist_success = np.zeros((n_segments, n_playlists))
self.alpha_zero = alpha_zero
self.beta_zero = beta_zero
self.t = 0
self.cascade_model = cascade_model
def recommend_to_users_batch(self, batch_users, n_recos=12, l_init=3):
user_segment = np.take(self.user_segment, batch_users)
user_displays = np.take(self.playlist_display, user_segment, axis = 0).astype(float)
user_success = np.take(self.playlist_success, user_segment, axis = 0)
user_score = np.random.beta(self.alpha_zero+user_success, self.beta_zero+user_displays - user_success)
user_choice = np.argsort(-user_score)[:, :n_recos]
# Shuffle l_init first slots
np.random.shuffle(user_choice[0:l_init])
return user_choice
def update_policy(self, user_ids, recos , rewards, l_init = 3):
batch_size = len(user_ids)
for i in range(batch_size):
user_segment = self.user_segment[user_ids[i]]
total_stream = len(rewards[i].nonzero())
nb_display = 0
for p, r in zip(recos[i], rewards[i]):
nb_display +=1
self.playlist_success[user_segment][p]+=r
self.playlist_display[user_segment][p]+=1
if self.cascade_model and ((total_stream == 0 and nb_display == l_init) or (r == 1)):
break
return
# Linear Thompson Sampling strategy for fully personalized contextual bandits, as in [Chapelle and Li, 2011]
class LinearTSPolicy(Policy):
def __init__(self, user_features, n_playlists, bias=0.0, cascade_model=True):
self.user_features = user_features
n_dim = user_features.shape[1]
self.n_playlists = n_playlists
self.models = [OnlineLogisticRegression(1, 1, n_dim, bias, 15) for i in range(n_playlists)]
self.m = np.zeros((n_playlists, n_dim))
self.m[:, -1] = bias
self.q = np.ones((n_playlists, n_dim))
self.n_dim = n_dim
self.cascade_model = cascade_model
def recommend_to_users_batch(self, batch_users, n_recos=12, l_init=3):
user_features = np.take(self.user_features, batch_users, axis=0)
n_users = len(batch_users)
recos = np.zeros((n_users, n_recos), dtype=np.int64)
step = 1
u = 0
while u < n_users:
u_next = min(n_users, u+step)
p_features_sampled =(np.random.normal(self.m, 1/np.sqrt(self.q), size= (u_next-u, self.n_playlists, self.n_dim)))
step_p = p_features_sampled.dot(user_features[u:u_next].T)
for i in range(u_next - u):
recos[u+i] = np.argsort((-step_p[i,:,i]))[:n_recos]
u += step
# Shuffle l_init first slots
np.random.shuffle(recos[0:l_init])
return recos
def update_policy(self, user_ids, recos , rewards, l_init=3):
rewards = 2*rewards - 1
batch_size = len(user_ids)
modified_playlists ={}
for i in range(batch_size):
total_stream = len(rewards[i].nonzero())
nb_display = 0
for p, r in zip(recos[i], rewards[i]):
nb_display +=1
if p not in modified_playlists:
modified_playlists[p] = {"X" : [], "Y" : []}
modified_playlists[p]["X"].append(self.user_features[user_ids[i]])
modified_playlists[p]["Y"].append(r)
if self.cascade_model and ((total_stream == 0 and nb_display == l_init) or (r == 1)):
break
for p,v in modified_playlists.items():
X = np.array(v["X"])
Y = np.array(v["Y"])
self.models[p].fit(X,Y)
self.m[p] = self.models[p].m
self.q[p] = self.models[p].q
return