-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
180 lines (134 loc) · 6.69 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
title: "County Level Mask Mandates"
output: github_document
always_allow_html: true
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
This package exists to allow easier access to the data provided by Austin L. Wright Et Al. in the working paper Tracking Mask Mandates during the COVID-19 Pandemic.
I had the wonderful opportunity to spend the summer in the University of Chicago DPSS program and worked on the capstone/lab that helped collect and validate the data. I wanted to make the data which was available easier to access for R users. Using this package users can easily make visualizations showing where and when mandates were adopted.
```{r , echo=FALSE, message=FALSE, warning=FALSE}
library(tidyverse)
library(USMaskMandates)
library(sf)
library(ggtext)
library(delabj)
county_shp <- read_sf("C:/Users/delabruerejosh/Downloads/shapefiles (1)/cb_2018_us_county_500k/cb_2018_us_county_500k.shp")
valid_states <- unique(mask_mandates$state_fips)
plotting_data <- county_shp %>%
left_join(mask_mandates %>%
mutate(STATEFP = state_fips,
COUNTYFP = stringr::str_sub(county_fips, -3, -1))) %>%
filter(!c(state_fips %in% c("02", "15" ,"11", "60", "66", "69", "72", "78")),
STATEFP %in% valid_states,
!is.na(state_fips)) %>% arrange(state_name)
ggplot(plotting_data)+
geom_sf(aes(fill = is.na(earliest_policy_date)),
size = 0.1)+
labs(
title = "US Counties <span style = 'color:#d95f02'> With </span> And <span style = 'color:#1b9e77'>Without</span> Mask Mandates",
subtitle = "On August 4th 2020"
)+
theme_minimal()+
theme(plot.title = element_markdown(),
axis.text = element_blank(),
plot.title.position = "plot")+
delabj::gridlines_off()+
delabj::legend_none()+
scale_fill_manual(values = c("#d95f02", "#1b9e77"))
```
## Installation
This package is currently only available via github.
You can install it from [Github](github.com) using the following commands
``` r
#install using devtools
devtools::install_github("delabj/USMaskMandates)
#install using remotes
remotes::install_github("delabj/USMaskMandates)
```
## About the data
Data were collected and refined by students and staff at the University of Chicago, led by Austin L. Wright. In particular the data was collected and validated by two labs of students, the IPAL Lab, and the DPSS Lab. As the data is ever changing, [corrections and revisions can be recommended to the original data authors via a form. ](https://docs.google.com/forms/u/2/d/e/1FAIpQLSfi4NTKH8_kFD8hb7_oWdcY2pIp9_YEbwvGs7kLmqU99_rQvw/viewform?usp=send_form)
Two data sets are provided. One is called `mask_mandates` and the other `raw_mandates`.
### Raw Mandates
This data set comes directly from the raw data provided by the paper authors. See `?raw_mandates` for specific details.
The following is a sampling of the data from this source.
```{r}
raw_mandates[sample(nrow(raw_mandates), 10),]
```
### Mask Mandates
I've taken the liberty of cleaning the data, by adding appropriate padding to FIPS codes, standardizing data formats and dropping duplicate columns. More details can be found by using `?mask_mandates` in the R console.
The following is a sample of random rows from the cleaned data
```{r}
mask_mandates[sample(nrow(mask_mandates), 10),]
```
## Examples
### Least Compliant States
```{r}
mask_mandates %>%
mutate(defy_status = if_else(is.na(county_policy_defiance), "Comply", "Defy" )) %>%
group_by(state_name, defy_status) %>%
count() %>%
pivot_wider(names_from = defy_status, values_from = n ) %>%
transmute(Comply = replace_na(Comply, 0),
Defy = replace_na(Defy, 0),
percent_compliant = Comply/(Comply+Defy),
state = state_name) %>%
na.omit() %>%
arrange(percent_compliant) %>%
head( 10) %>%
ggplot(aes(y= forcats::fct_reorder(state, percent_compliant),
x=percent_compliant,
fill = forcats::fct_reorder(state, percent_compliant)))+
geom_col()+
labs(title = "10 Least Compliant States",
y=NULL)+
theme_minimal()+
delabj::scale_fill_delabj()+
delabj::legend_none()+
theme(plot.title.position = "plot")
```
### Map By Date
county_shp is a local shapefile I have, that I'm unsure of distribution rights.
```{r}
valid_states <- unique(mask_mandates$state_fips)
# join to shape file
plotting_data <- county_shp %>%
left_join(mask_mandates %>%
mutate(STATEFP = state_fips,
COUNTYFP = stringr::str_sub(county_fips, -3, -1))) %>%
# Filter out non lower 48 states
filter(!c(state_fips %in% c("02", "15" ,"11", "60", "66", "69", "72", "78")),
STATEFP %in% valid_states,
!is.na(state_fips)) %>% arrange(state_name)
ggplot(plotting_data)+
geom_sf(aes(fill = earliest_policy_date),
size = 0.1)+
labs(
title = "Mask Mandate Starting Dates",
subtitle = "as of August 4th 2020",
fill = "Mandate Start Date"
)+
theme_minimal()+
theme(plot.title = element_markdown(),
axis.text = element_blank(),
plot.title.position = "plot")+
delabj::gridlines_off()+
scale_fill_date(low = "#8856a7",
high = "#e0ecf4",
na.value = "#fc8d59")+
theme(legend.position = c(.15,.15),
legend.direction = "horizontal")+
guides(fill = guide_colorbar(title.position = "top",
title.hjust = 0,
barwidth = 10,
frame.colour = "black")
)
```
## Additional data use information
In order to make this data more accessible, Austin L. Wright. Published this data [With their COVID-19 research.](remotes::install_github("delabj/USMaskMandates) They ask that anyone using this data cite the working paper and acknowledge the source of the data. I have provided a link and citation below for the working paper.
## References
[Data Release and Working Paper:](https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_2020104.pdf)
+ Wright, Austin L. and Chawla, Geet and Chen, Luke and Farmer, Anthony, Tracking Mask Mandates During the Covid-19 Pandemic (August 4, 2020). University of Chicago, Becker Friedman Institute for Economics Working Paper No. 2020-104, Available at SSRN: https://ssrn.com/abstract=3667149
[Related Paper on Mask Use and Partisanship:](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3664779)
+ Milosh, Maria and Painter, Marcus and Van Dijcke, David and Wright, Austin L., Unmasking Partisanship: How Polarization Influences Public Responses to Collective Risk (July 31, 2020). University of Chicago, Becker Friedman Institute for Economics Working Paper No. 2020-102, Available at SSRN: https://ssrn.com/abstract=3664779 or http://dx.doi.org/10.2139/ssrn.3664779