diff --git a/CommandLine/mrtd_coordsys_check.m b/CommandLine/mrtd_coordsys_check.m index efeae89..de1bf79 100644 --- a/CommandLine/mrtd_coordsys_check.m +++ b/CommandLine/mrtd_coordsys_check.m @@ -1,9 +1,9 @@ function mrtd_coordsys_check(varargin) disp('mrtd_coordsys_check'); coptions = varargin; - if(length(varargin{1}) > 1) - coptions = varargin{1}; - end + % if(length(varargin{1}) > 1) + % coptions = varargin{1}; + % end % disp(varargin) if(isempty(coptions) || isempty(coptions{1}) || strcmpi(coptions{1},'-help')) diff --git a/CommandLine/mrtd_coordsys_fix.m b/CommandLine/mrtd_coordsys_fix.m index 92571ae..7007ab9 100644 --- a/CommandLine/mrtd_coordsys_fix.m +++ b/CommandLine/mrtd_coordsys_fix.m @@ -1,9 +1,9 @@ function mrtd_coordsys_fix(varargin) disp('mrtd_coordsys_fix'); coptions = varargin; - if(length(varargin{1}) > 1) - coptions = varargin{1}; - end + % if(length(varargin{1}) > 1) + % coptions = varargin{1}; + % end % disp(varargin) if(isempty(coptions) || isempty(coptions{1}) || strcmpi(coptions{1},'-help')) @@ -24,7 +24,7 @@ function mrtd_coordsys_fix(varargin) if(isempty(file_in)) error('Need to specify the target .nii file'); end - auto_fix = GiveValueForName(coptions,'-nii'); + auto_fix = GiveValueForName(coptions,'-auto'); if(isempty(auto_fix)) auto_fix = 0; end diff --git a/CommandLine/mrtd_neuro.m b/CommandLine/mrtd_neuro.m index 6f2a65d..ceb6344 100644 --- a/CommandLine/mrtd_neuro.m +++ b/CommandLine/mrtd_neuro.m @@ -1,20 +1,20 @@ function mrtd_neuro(varargin) disp('mrtd_neuro'); coptions = varargin; - if(length(varargin{1}) > 1) - coptions = varargin{1}; - end + % if(length(varargin{1}) > 1) + % coptions = varargin{1}; + % end % disp(varargin) if(isempty(coptions) || isempty(coptions{1}) || strcmpi(coptions{1},'-help')) - help = 'This tool applies some popular neuroimaging pipelines'; + help = 'This tool performs some neuroimaging tasks'; help = [help newline]; - help = [help newline 'FOD-based usage: mrtd_neuro -t1 t1_file.nii -flair flair.nii -apply cat12pipeline -out output_folder']; + help = [help newline 'FOD-based usage: mrtd_neuro -t1 t1_file.nii -flair flair.nii -apply cat12pipeline/brainextraction -out output_folder']; help = [help newline]; help = [help newline '-t1: T1-weighted .nii file']; help = [help newline '-flair: FLAIR .nii file']; - help = [help newline '-out: output folder']; - help = [help newline '-apply: "cat12pipeline"']; + help = [help newline '-out: output folder (for cat12) or output file']; + help = [help newline '-apply: "cat12pipeline" or "brainextraction"']; help = [help newline]; fprintf(help); @@ -44,6 +44,10 @@ function mrtd_neuro(varargin) error('Missing mandatory argument -out'); end +if(isempty(t1_file)) + error('Missing mandatory argument -t1'); +end + try % cat_defaults % cat12 @@ -76,5 +80,7 @@ function mrtd_neuro(varargin) if(should_remove_flair == 1) delete(flair_file); end +elseif(strcmpi(method,'brainextraction')) + Neuro.BrainExtractionWithRegistration('nii_file',t1_file,'output',outfile); end end diff --git a/CommandLine/mrtd_preproc.asv b/CommandLine/mrtd_preproc.asv index 22a9f22..09655b3 100644 --- a/CommandLine/mrtd_preproc.asv +++ b/CommandLine/mrtd_preproc.asv @@ -17,12 +17,14 @@ function mrtd_preproc(varargin) ' 4=[x z y] =[y z x] 6=[z x y]']; help = [help newline '-grad_flip: how to flip the sign of the diffusion gradients 1=[x y z] 2=[-x y z] 3=[x -y z] 4=[x y -z]']; help = [help newline '-epi: .nii file to perform EPI correction (T1 or T2 image)']; - help = [help newline '-epi_constraint: allow deformation on specific axis. Input between quotas "1 1 1"']; + help = [help newline '-epi_constraint: allow deformation on specific axis. Input as a three digit number: 101']; help = [help newline '-epi_reg_mode: image to use for registration to structural. One between "fa" (default), "b0", "dwis"']; help = [help newline '-epi_normcorr: 0 or 1. Use normalized correlation in place of mutual information to drive the registration.']; help = [help newline '-denoise: 0 or 1. Perform MP-PCA denoising']; help = [help newline '-sdc: 0 or 1. Perform signal drift correction']; help = [help newline '-gibbs: 0 or 1. Perform Gibbs ringing correction']; + help = [help newline '-use_fsl: 0 or 1. Whether to perform the processing via FSL.']; + help = [help newline '-topup: reverse phase encoding file. If specified, processing will be performed via FSL.']; help = [help newline]; fprintf(help); @@ -84,7 +86,7 @@ function mrtd_preproc(varargin) epi_constraint = [1 1 1]; else pieces = strsplit(epi_constraint,' '); - epi_constraint = [str2double(pieces{1}) str2double(pieces{2}) str2double(pieces{3})]; + epi_constraint = [str2double(pieces{1}(1)) str2double(pieces{1}(2)) str2double(pieces{1}(3))]; end epi_reg_mode = GiveValueForName(coptions,'-epi_reg_mode'); if(isempty(epi_reg_mode)) @@ -114,6 +116,20 @@ function mrtd_preproc(varargin) else denoise = str2double(denoise); end + + use_fsl = GiveValueForName(coptions,'-use_fsl'); + if(isempty(use_fsl)) + use_fsl = 0; + else + use_fsl = str2double(use_fsl); + end + + topup = GiveValueForName(coptions,'-topup'); + if(isempty(topup)) + topup = []; + else + use_fsl = 1; + end ext = '.nii'; shift = 4; @@ -158,17 +174,43 @@ function mrtd_preproc(varargin) 'grad_flip',grad_flip); disp('Motion correction'); - if(~isempty(epi_tgt)) - MRTQuant.PerformMocoEPI('mat_file',temp_mat_file,'epi_tgt',epi_tgt,'constraint_epi',epi_constraint,'epi_reg_mode',epi_reg_mode,'use_normcorr',epi_normcorr); - mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file(1:end-4) '_MD_C_trafo.mat']); + if(use_fsl == 0) + if(~isempty(epi_tgt)) + MRTQuant.PerformMocoEPI('mat_file',temp_mat_file,'epi_tgt',epi_tgt,'constraint_epi',epi_constraint,'epi_reg_mode',epi_reg_mode,'use_normcorr',epi_normcorr); + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file(1:end-4) '_MD_C_trafo.mat']); + else + MRTQuant.PerformMocoEPI('mat_file',temp_mat_file); + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file(1:end-4) '_MD_C_native.mat']); + end else - MRTQuant.PerformMocoEPI('mat_file',temp_mat_file); - mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file(1:end-4) '_MD_C_native.mat']); + % First correct for motion and eventually EPI using FSL + fsl_preproc = strrep(temp_mat_file,'.mat','_fsl.nii'); + if(~isempty(topup)) + MRTQuant.PerformMocoEPI_FSL('mat_file',temp_mat_file,'output',fsl_preproc,... + 'topup_nii',topup); + else + MRTQuant.PerformMocoEPI_FSL('mat_file',temp_mat_file,'output',fsl_preproc); + end + temp_mat_file_fsl = MRTQuant.QuickNiiBvalBvecToMat('nii_file',fsl_preproc,... + 'bval_file',strrep(fsl_preproc,'.nii','.bval'),'bvec_file',strrep(fsl_preproc,'.nii','.bvec'),'grad_perm',grad_perm,... + 'grad_flip',grad_flip); + + if(~isempty(epi_tgt)) + MRTQuant.PerformMocoEPI('mat_file',temp_mat_file_fsl,'epi_tgt',epi_tgt,'constraint_epi',epi_constraint,'epi_reg_mode',epi_reg_mode,'use_normcorr',epi_normcorr,'do_moco',0); + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file_fsl(1:end-4) '_MD_C_trafo.mat']); + else + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',temp_mat_file_fsl); + end + delete(temp_mat_file_fsl) end - - [fp,fn,~] = fileparts(output_file); - output_file = fullfile(fp,fn); - delimiter = strfind() + delete(temp_mat_file) +% [fp,fn,~] = fileparts(output_file); +% output_file = fullfile(fp,fn); + delimiter = strfind(output_file,'.nii'); + if(isempty(delimiter)) + delimiter = length(output_file); + end + output_file = output_file(1:delimiter); MRTQuant.WriteNifti(mrt_data,[output_file '.nii']); diff --git a/CommandLine/mrtd_preproc.m b/CommandLine/mrtd_preproc.m index ef8626b..b44d498 100644 --- a/CommandLine/mrtd_preproc.m +++ b/CommandLine/mrtd_preproc.m @@ -23,6 +23,8 @@ function mrtd_preproc(varargin) help = [help newline '-denoise: 0 or 1. Perform MP-PCA denoising']; help = [help newline '-sdc: 0 or 1. Perform signal drift correction']; help = [help newline '-gibbs: 0 or 1. Perform Gibbs ringing correction']; + help = [help newline '-use_fsl: 0 or 1. Whether to perform the processing via FSL.']; + help = [help newline '-topup: reverse phase encoding file. If specified, processing will be performed via FSL.']; help = [help newline]; fprintf(help); @@ -114,6 +116,20 @@ function mrtd_preproc(varargin) else denoise = str2double(denoise); end + + use_fsl = GiveValueForName(coptions,'-use_fsl'); + if(isempty(use_fsl)) + use_fsl = 0; + else + use_fsl = str2double(use_fsl); + end + + topup = GiveValueForName(coptions,'-topup'); + if(isempty(topup)) + topup = []; + else + use_fsl = 1; + end ext = '.nii'; shift = 4; @@ -158,14 +174,44 @@ function mrtd_preproc(varargin) 'grad_flip',grad_flip); disp('Motion correction'); + % If an EPI tgt is specified, make sure it is Elastix "friendly" if(~isempty(epi_tgt)) - MRTQuant.PerformMocoEPI('mat_file',temp_mat_file,'epi_tgt',epi_tgt,'constraint_epi',epi_constraint,'epi_reg_mode',epi_reg_mode,'use_normcorr',epi_normcorr); - mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file(1:end-4) '_MD_C_trafo.mat']); + temp_tgt = strrep(temp_file,'.nii','_target.nii'); + MRTQuant.ConformSpatialDimensions('nii_file',epi_tgt,'output',temp_tgt); else - MRTQuant.PerformMocoEPI('mat_file',temp_mat_file); - mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file(1:end-4) '_MD_C_native.mat']); + temp_tgt = []; end - + + if(use_fsl == 0) + if(~isempty(epi_tgt)) + MRTQuant.PerformMocoEPI('mat_file',temp_mat_file,'epi_tgt',temp_tgt,'constraint_epi',epi_constraint,'epi_reg_mode',epi_reg_mode,'use_normcorr',epi_normcorr); + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file(1:end-4) '_MD_C_trafo.mat']); + else + MRTQuant.PerformMocoEPI('mat_file',temp_mat_file); + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file(1:end-4) '_MD_C_native.mat']); + end + else + % First correct for motion and eventually EPI using FSL + fsl_preproc = strrep(temp_mat_file,'.mat','_fsl.nii'); + if(~isempty(topup)) + MRTQuant.PerformMocoEPI_FSL('mat_file',temp_mat_file,'output',fsl_preproc,... + 'topup_nii',topup); + else + MRTQuant.PerformMocoEPI_FSL('mat_file',temp_mat_file,'output',fsl_preproc); + end + temp_mat_file_fsl = MRTQuant.QuickNiiBvalBvecToMat('nii_file',fsl_preproc,... + 'bval_file',strrep(fsl_preproc,'.nii','.bval'),'bvec_file',strrep(fsl_preproc,'.nii','.bvec'),'grad_perm',grad_perm,... + 'grad_flip',grad_flip); + + if(~isempty(epi_tgt)) + MRTQuant.PerformMocoEPI('mat_file',temp_mat_file_fsl,'epi_tgt',temp_tgt,'constraint_epi',epi_constraint,'epi_reg_mode',epi_reg_mode,'use_normcorr',epi_normcorr,'do_moco',0); + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',[temp_mat_file_fsl(1:end-4) '_MD_C_trafo.mat']); + else + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',temp_mat_file_fsl); + end + delete([temp_mat_file_fsl(1:end-4) '*']) + end + delete([temp_mat_file(1:end-4) '*']) % [fp,fn,~] = fileparts(output_file); % output_file = fullfile(fp,fn); delimiter = strfind(output_file,'.nii'); diff --git a/Core/MRTQuant.asv b/Core/MRTQuant.asv new file mode 100644 index 0000000..89a1110 --- /dev/null +++ b/Core/MRTQuant.asv @@ -0,0 +1,4567 @@ +%%%$ Included in MRIToolkit (https://github.com/delucaal/MRIToolkit) %%% +%%% Alberto De Luca - alberto@isi.uu.nl $%%% +%%% Distributed under the terms of LGPLv3 %%% + +% This class implements methods for the MRIToolkit diffusion pipeline +% Differently from other classes (as EDTI), the input / output of this +% class are Niftis and other exchangeble formats (in addition to +% ExploreDTI-compatible .mat files) +classdef MRTQuant < handle + methods(Static) + + function data = LoadNifti(data_file,apply_intensity_scale) + % Loads a .nii(.gz) and returns it into a data structure with + % fields: img (the data matrix) and VD (voxel dimension) + % input arguments: + % data_file: the .nii file to load + % apply_intensity_scale: use the slope/intercept specified in the + % nifti header + if(nargin < 2) + apply_intensity_scale = 0; + end + [I,VD,~,hdr] = EDTI_Library.E_DTI_read_nifti_file(data_file); + data.img = I; + data.VD = VD; + data.hdr = hdr; + + if(apply_intensity_scale == 1 && hdr.dime.scl_slope ~= 0 && ... + isfinite(hdr.dime.scl_slope) && isfinite(hdr.dime.scl_inter)) + data.img = single(data.img)*hdr.dime.scl_slope+hdr.dime.scl_inter; + data.hdr.dime.scl_slope = 1; + data.hdr.dime.scl_inter = 0; + data.hdr.dime.datatype = 16; + data.hdr.dime.bitpix = 32; + end + end + + function WriteNifti(data, file_name, use_original_header) + % Writes a data matrix to nifti as specified in file_name. data + % must be a struct with fields img (the matrix) and VD (voxel + % dimension) + global MRIToolkit; + if(nargin < 3) + use_original_header = 1; + end + + if(use_original_header < 1 || ~isfield(data,'hdr')) + if(isfield(data,'hdr')) + data = rmfield(data,'hdr'); + end + EDTI_Library.E_DTI_write_nifti_file(data.img, data.VD, file_name); + else + data.img = flip(data.img,1); + data.img = flip(data.img,2); + if ndims(data.img)==4 + data.img = permute(data.img,[2 1 3 4]); + elseif ndims(data.img)==3 + data.img = permute(data.img,[2 1 3]); + end + data.untouch = 1; + data.hdr.dime.dim(2:4) = size(data.img(:,:,:,1)); + if(ndims(data.img) == 4) + data.hdr.dime.dim(5) = size(data.img,4); + else + data.hdr.dime.dim([1 5]) = [3 1]; + end + data.img = single(data.img); + data.hdr.dime.datatype = 16; + data.hdr.dime.bitpix = 32; + + data.hdr.dime.pixdim(2:4) = data.VD([2 1 3]); + + if(MRIToolkit.EnforceNiiGz > 0 && ~contains(file_name,'nii.gz')) + file_name = strrep(file_name,'nii','nii.gz'); + end + save_untouch_nii(data, file_name); + end + end + + function ApplyRescaleSlope(varargin) + % This function applies the rescale and slope to the data field, + % to ensure these are used in subsequent processing steps. + % By default, this is not the case. Input arguments: + % nii_file: the input file + % output: the output file + if(isempty(varargin)) + my_help('MRTQuant.ApplyRescaleSlope'); + return; + end + + coptions = varargin; + nii_file = GiveValueForName(coptions,'nii_file'); + if(isempty(nii_file)) + error('Missing mandatory parameter nii_file'); + end + output = GiveValueForName(coptions,'output'); + if(isempty(output)) + error('Missing mandatory parameter output'); + end + + json.CallFunction = 'MRTQuant.ApplyRescaleSlope'; + json.Description = my_help('MRTQuant.ApplyRescaleSlope'); + + json.ReferenceFile = nii_file; + json.ProcessingType = 'Preprocessing'; + + data = MRTQuant.LoadNifti(nii_file,1); + MRTQuant.WriteNifti(data,output); + + NiftiIO_basic.WriteJSONDescription('output',output(1:end-4),'props',json); + end + + function ConformSpatialDimensions(varargin) + % Ensures consistency with the coordinate systems of MRIToolkit and + % ExploreDTI. Input arguments: + % nii_file: the input file + % output: the output file + if(isempty(varargin)) + my_help('MRTQuant.ConformSpatialDimensions'); + return; + end + + coptions = varargin; + nii_file = GiveValueForName(coptions,'nii_file'); + if(isempty(nii_file)) + error('Missing mandatory parameter nii_file'); + end + output = GiveValueForName(coptions,'output'); + if(isempty(output)) + error('Missing mandatory parameter output'); + end + + data_in = nii_file; + data_out = output; + + try + hdr = load_untouch_nii(data_in); + catch + data_in = [data_in '.gz']; + hdr = load_untouch_nii(data_in); + end + smat = [hdr.hdr.hist.srow_x(1:3); + hdr.hdr.hist.srow_y(1:3); + hdr.hdr.hist.srow_z(1:3)]; + + b = hdr.hdr.hist.quatern_b; + c = hdr.hdr.hist.quatern_c; + d = hdr.hdr.hist.quatern_d; + a = (1.0-(b*b+c*c+d*d)); + if(a < 1e-7) + a = 1.0 / sqrt(b*b+c*c+d*d) ; + b = b*a; + c = c*a; + d = d*a; + a = 0; + else + a = sqrt(a); + end + qfac = hdr.hdr.dime.pixdim(1); + dx = abs(hdr.hdr.dime.pixdim(2)); + dy = abs(hdr.hdr.dime.pixdim(3)); + dz = abs(hdr.hdr.dime.pixdim(4)); + if(qfac < 1) + dz = -dz; + end + qmat = [(a*a+b*b-c*c-d*d)*dx (2*b*c-2*a*d)*dy (2*b*d+2*a*c)*dz; + (2*b*c+2*a*d)*dx (a*a+c*c-b*b-d*d)*dy (2*c*d-2*a*b)*dz; + (2*b*d-2*a*c)*dx (2*c*d+2*a*b)*dy (a*a+d*d-c*c-b*b)*dz]; + if(hdr.hdr.hist.sform_code > 0) + if(hdr.hdr.hist.sform_code > 0) + disp('Using the s-form' ); + qmat = smat; + end + else + if(hdr.hdr.hist.sform_code == 0) + disp('No s-form'); + if(hdr.hdr.hist.qform_code > 0) + disp('Using q-form'); + smat = qmat; + else + disp('Using identity orientation') + smat = eye(3); + end + end + end + + permute_order = [1 2 3]; + sign_order = [1 1 1]; + for ij=1:size(smat,2) +% [~,IX] = max(abs(smat(:,ij))); + [~,IX] = max(abs(smat(ij,:))); + permute_order(ij) = IX; + if(smat(ij,IX) < 0) + sign_order(ij) = -1; + end + end + + if(length(unique(permute_order)) < length(permute_order)) + disp('Please visually check the resulting image.'); + % temp workaround + permute_order = [1 2 3]; + sign_order = [1 1 1]; + for ij=1:size(smat,2) + [~,IX] = max(abs(smat(:,ij))); +% [~,IX] = max(abs(smat(ij,:))); + permute_order(ij) = IX; + if(smat(ij,IX) < 0) + sign_order(ij) = -1; + end + end + end + + out_data.img = single(hdr.img); + out_data.img = permute(out_data.img,[permute_order 4]); + for ij=1:length(sign_order) + if(sign_order(ij) == -1) + out_data.img = flip(out_data.img,ij); + end + end + + out_data.VD = hdr.hdr.dime.pixdim(2:4); + out_data.VD = out_data.VD(permute_order(1:3)); + out_data.VD = out_data.VD([2 1 3]); + out_data.img = permute(out_data.img,[2 1 3 4]); + out_data.img = flip(out_data.img,1); + out_data.img = flip(out_data.img,2); + + MRTQuant.WriteNifti(out_data,data_out,0); + + json.CallFunction = 'MRTQuant.ConformSpatialDimensions'; + json.Description = my_help('MRTQuant.ConformSpatialDimensions'); + json.ReferenceFile = nii_file; + json.ProcessingType = 'Preprocessing'; + + json.permute_order = permute_order; + json.sign_order = sign_order; + json.original_header = hdr.hdr; + fn = strrep(strrep(data_out,'.nii',''),'.gz',''); + NiftiIO_basic.WriteJSONDescription('output',fn,'props',json); + + end + + function RestoreSpatialDimensions(varargin) + % Restores the original coordinate system from a json definition file. Input arguments: + % nii_file: the input file + % output: the output file + % json_file: describing the reference coordinate system. + if(isempty(varargin)) + my_help('MRTQuant.RestoreSpatialDimensions'); + return; + end + + coptions = varargin; + nii_file = GiveValueForName(coptions,'nii_file'); + if(isempty(nii_file)) + error('Missing mandatory parameter nii_file'); + end + output = GiveValueForName(coptions,'output'); + if(isempty(output)) + error('Missing mandatory parameter output'); + end + json_in = GiveValueForName(coptions,'json_file'); + if(isempty(json_in)) + error('Missing mandatory parameter json_file'); + end + + data_in = nii_file; + data_out = output; + json_def = NiftiIO_basic.ReadJSONDescription('json_file',json_in); + + try + hdr = load_untouch_nii(data_in); + catch + data_in = [data_in '.gz']; + hdr = load_untouch_nii(data_in); + end + + out_data.img = single(hdr.img); + + out_data.img = flip(out_data.img,1); + out_data.img = flip(out_data.img,2); + out_data.img = permute(out_data.img,[2 1 3 4]); + for ij=1:length(json_def.sign_order) + if(json_def.sign_order(ij) == -1) + out_data.img = flip(out_data.img,ij); + end + end + + out_data.img = permute(out_data.img,[json_def.permute_order 4]); + out_data.hdr = json_def.original_header; + out_data.hdr.dime.scl_inter = 0; + out_data.hdr.dime.scl_slope = 1; + out_data.hdr.dime.datatype = 16; + out_data.h + + MRTQuant.WriteNifti(out_data,data_out,0); + + json.CallFunction = 'MRTQuant.ConformSpatialDimensions'; + json.Description = my_help('MRTQuant.ConformSpatialDimensions'); + json.ReferenceFile = nii_file; + json.ProcessingType = 'Preprocessing'; + + fn = strrep(strrep(data_out,'.nii',''),'.gz',''); + %NiftiIO_basic.WriteJSONDescription('output',fn,'props',json); + + end + + function SetB0Val(newval) + % Set the b-value threshold in s/mm2 to be considered a b=0s/mm2. + % This is useful for instance when working with HCP data (set it to + % 70). + global MRIToolkit; + MRIToolkit.min_bval_as_b0 = newval; + end + + function bmat = b_Matrix_from_bval_bvec(varargin) + % Computes bmat (b-matrix) from bvals and bvecs and writes it + % to a .txt file with the same name. Specify only the + % bval file (or variable) as input. The bvec must then be in the same folder with + % the same naming. txt_file is the destination file of the b-matrix + % (optional, otherwise the file is created in the same directory) + % Arguments: + % bval_file: the input .bval file + % bvec_file: the input .bvec file - optional. If not specified a + % file with the same name of bval_file and extension .bvec will be + % searched. + % or, alternatively + % bval: the input bvals as variable + % bvec: the input bvecs as variable + + % output: the output b-matrix .txt file + if( isempty(varargin)) + my_help('MRTQuant.b_Matrix_from_bval_bvec'); + bmat = []; + return; + end + coptions = varargin; + bval = GiveValueForName(coptions,'bval'); + bvec = GiveValueForName(coptions,'bvec'); + if(isempty(bval) || isempty(bvec)) + bval_file = GiveValueForName(coptions,'bval_file'); + if(isempty(bval_file)) + error('Missing mandatory parameter bval_file'); + end + bvec_file = GiveValueForName(coptions,'bvec_file'); + if(isempty(bvec_file)) + bvec_file = [bval_file(1:end-4) 'bvec']; + end + txt_file = GiveValueForName(coptions,'output'); + if(isempty(txt_file)) + error('Missing mandatory parameter output'); + end + EDTI_Library.E_DTI_convert_nii_dic_2_txt_exe2(bval_file,bvec_file,txt_file); + else + g = bvec; + bmat = repmat(bval,[1 6]).*[g(:,1).^2 2*g(:,1).*g(:,2) 2*g(:,1).*g(:,3) ... + g(:,2).^2 2*g(:,2).*g(:,3) g(:,3).^2]; + return + end + if(nargout > 0) + if(isempty(txt_file)) + bmat = load([bval_file(1:end-5) '.txt']); + else + bmat = load(txt_file); + end + end + end + + function [bvals,grad] = bval_bvec_from_b_Matrix(b) + % Computes bvals and bvecs for a given b (b-matrix) + bvals = sum(b(:,[1 4 6]),2); + + BSign = sign(sign(b(:,1:3)) + 0.0001); % Adding 0.0001 avoids getting zeros here + + grad = BSign .* sqrt(b(:,[1 4 6])); + grad_n = sqrt(sum(grad.*grad,2)); + grad = grad./[grad_n grad_n grad_n]; + grad(isnan(grad)) = 0; + end + + function mask = EnhancedSpatialMasking(DWI, tuning_param, morphological_size) + % Computes a mask for dMRI data using combinations of thresholding + % and image-processing (erosions) + mask = EDTI_Library.E_DTI_Create_Mask_From_DWI_enhanced_IND(DWI, tuning_param, morphological_size); + end + + function DataMat2Nii_bval_bvec(file_in,prefix_out) + % Exports the data (.nii) + bvals and bvecs for a given file_in + % (must be an ExploreDTI-like .mat file). The export will use the + % naming specified in prefix_out + MAT = load(file_in,'DWI','b','VDims'); + [bval, grad] = EDTI_Library.E_DTI_GetGradientsandBval_SC(MAT.b, 0); + MAT.DWI = EDTI_Library.E_DTI_DWI_cell2mat(MAT.DWI); + + EDTI_Library.E_DTI_write_nifti_file(MAT.DWI,MAT.VDims,[prefix_out '.nii']); + + bval_file = fopen([prefix_out '.bval'],'wt'); + for ij=1:length(bval) + fprintf(bval_file,'%f ',bval(ij)); + end + fclose(bval_file); + + bvec_file = fopen([prefix_out '.bvec'],'wt'); + for ij=1:size(grad,2) + for ik=1:size(grad,1) + fprintf(bvec_file,'%f ',grad(ik,ij)); + end + fprintf(bvec_file,'%s',newline); + end + fclose(bvec_file); + end + + function PerformSignalDriftCorrection(varargin) + % Interface to the signal drift correction. Arguments: + % nii_file: the input .nii file + % output: the output .nii file + % target_bval: the target b-value used for the correction, default is 0 + % target_bval_tol: tolerance around the target b-value - default is 1 + % pol_degree: Degree of the polynomial used for correction (1-3), default is 2 + % masking: try automatic masking on the target volume. default is 0 + if(isempty(varargin)) + my_help('MRTQuant.PerformSignalDriftCorrection'); + return; + end + + json.CallFunction = 'MRTQuant.PerformSignalDriftCorrection'; + json.Description = my_help('MRTQuant.PerformSignalDriftCorrection'); + + coptions = varargin; + par.bvalC = 0; + tgt_bval = GiveValueForName(coptions,'target_bval'); + if(~isempty(tgt_bval)) + par.bvalC = (tgt_bval); + end + json.target_bval = tgt_bval; + + par.bv_thresh=1; + tgt_thresh = GiveValueForName(coptions,'target_bval_tol'); + if(~isempty(tgt_thresh)) + par.bv_thresh = (tgt_thresh); + end + json.bv_thresh = tgt_thresh; + + par.method = 2; + tgt_method = GiveValueForName(coptions,'pol_degree'); + if(~isempty(tgt_method)) + par.method = (tgt_method); + end + json.method = tgt_method; + + par.masking.do_it = 0; + tgt_masking = GiveValueForName(coptions,'masking'); + if(~isempty(tgt_masking)) + par.tgt_masking = (tgt_masking); + end + json.masking = tgt_masking; + + par.show_summ_plot = 1; + par.suff = '_sdc'; + par.masking.p1 = 5; + par.masking.p2 = 1; + + file_in = GiveValueForName(coptions,'nii_file'); + if(isempty(file_in)) + error('Missing mandatory argument nii_file'); + end + + file_out = GiveValueForName(coptions,'output'); + if(isempty(file_out)) + error('Missing mandatory argument output'); + end + + param{1} = par; + param{1}.f_in_nii = file_in; + param{1}.f_in_txt = [file_in(1:end-4) '.txt']; + param{1}.f_out_nii = file_out; + param{1}.f_out_txt = [file_out(1:end-4) '.txt']; + + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + EDTI_Library.E_DTI_signal_drift_correction(param{1}); + + NiftiIO_basic.WriteJSONDescription('output',file_out(1:end-4),'props',json); + end + + function FlipPermuteSpatialDimensions(varargin) + % Interface to flip / permuting spatial dimensions (Ensures + % compliance of the .nii files with the ExploreDTI convention) + % Accordingly, the header is discarded and only the rotation matrix + % retained. Arguments: + % nii_file: The file to flip permute. + % output: The flip/permuted file. + % permute: default is [1 2 3] + % flip: default is [0 0 0]. Setting 1 will flip the corresponding + % dimension + if(isempty(varargin)) + my_help('MRTQuant.FlipPermuteSpatialDimensions'); + return; + end + + json.CallFunction = 'MRTQuant.FlipPermuteSpatialDimensions'; + json.Description = my_help('MRTQuant.FlipPermuteSpatialDimensions'); + + coptions = varargin; + params.suff = ''; + tgt_permute = GiveValueForName(coptions,'permute'); + tgt_flip = GiveValueForName(coptions,'flip'); + if(isempty(tgt_permute)) + params.permute = [1 2 3]; + else + params.permute = tgt_permute; + end + if(isempty(tgt_flip)) + params.flip = [0 0 0]; + else + params.flip = tgt_flip; + end + + json.permute = params.permute; + json.flip = params.permute; + + file_in = GiveValueForName(coptions,'nii_file'); + if(isempty(file_in)) + error('Missing mandatory parameter nii_file'); + end + + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + file_out = GiveValueForName(coptions,'output'); + if(isempty(file_out)) + file_out = [file_in(1:end-4) '_FP.nii']; + end + + params.force_voxel_size = []; + EDTI_Library.E_DTI_flip_permute_nii_file_exe(file_in,params,file_out); + + if(exist([file_in(1:end-4) '.txt'],'file')) + copyfile([file_in(1:end-4) '.txt'],[file_out(1:end-4) '.txt']); + end + + NiftiIO_basic.WriteJSONDescription('output',file_out(1:end-4),'props',json); + end + + function ResampleDataSpatially(varargin) + % Inteface to resample 3D/4D volumes to a given resolution (Ensures + % compliance of the .nii files with the ExploreDTI convention) + % Accordingly, the header is discarded and only the rotation matrix + % retained. Arguments: + % nii_file: The file to flip permute. + % output: The flip/permuted file. + % res: the desired resolutio, e.g. [1 1 1] + % method: spline (default), linear or nearest. + if(isempty(varargin)) + my_help('MRTQuant.ResampleDataSpatially'); + return; + end + + json.CallFunction = 'MRTQuant.ResampleDataSpatially'; + json.Description = my_help('MRTQuant.ResampleDataSpatially'); + + coptions = varargin; + params.suff = ''; + tgt_res = GiveValueForName(coptions,'res'); + if(isempty(tgt_res)) + error('Missing mandatory parameter tgt_res'); + end + json.tgt_res = tgt_res; + file_in = GiveValueForName(coptions,'nii_file'); + if(isempty(file_in)) + error('Missing mandatory parameter nii_file'); + end + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + file_out = GiveValueForName(coptions,'output'); + if(isempty(file_out)) + file_out = [file_in(1:end-4) '_resampled.nii']; + end + + method = GiveValueForName(coptions,'method'); + if(isempty(method)) + method = 'spline'; + end + + data = MRTQuant.LoadNifti(file_in); + + data.img = MRT_Library.Resample_nii_file(data.img, tgt_res, data.VD,method); + data.VD = tgt_res; + if(isfield(data,'hdr')) + data = rmfield(data,'hdr'); + end + + MRTQuant.WriteNifti(data,file_out); + + if(exist([file_in(1:end-4) '.txt'],'file')) + copyfile([file_in(1:end-4) '.txt'],[file_out(1:end-4) '.txt']); + end + + NiftiIO_basic.WriteJSONDescription('output',file_out(1:end-4),'props',json); + end + + function PerformDTI_DKIFit(varargin) + % Interface to perform the DTI/DKI fit. This will create a .mat + % file in the ExploreDTI format with the same name of the provided + % .nii file. Arguments: + % nii_file: the diffusion MRI 4D .nii data + % mat_file: as alternative to nii_file, an ExploreDTI-like .mat file + % txt_file: The b-matrix .txt file. If empty, will look for a file + % named as the nii_file but with .txt extension. + % dki: either 0 (default) or 1, enables the DKI fit + % grad_perm: gradient permutations to ensure consistency with the + % spatial dimensions. 1[x y z] 2[y x z] 3[z y x] + % 4[x z y] 5[y z x] 6[z x y] + % grad_flip: sign flipping of the gradients to ensure consistency + % 1[x y z] 2[-x y z] 3[x -y z] 4[x y -z] + % fit_mode: ols, nls, wls, rekindle + % dki_constraints: [min max] for the DKI diagonal values + % mask_file: a .nii for masking + % output: the output .mat file. If not specified a file with the + % same name of the .nii but extension .mat is created + % mk_curve: 1 or 0. Repeat the DKI fit with the "M-K curve technique" + % rekindle_kappa: 6 (default) determines the threshold for + % outlier rejection when using rekindle + if(isempty(varargin)) + my_help('MRTQuant.PerformDTI_DKIFit'); + return; + end + global MRIToolkit; + + json.CallFunction = 'MRTQuant.PerformDTI_DKIFit'; + json.Description = my_help('MRTQuant.PerformDTI_DKIFit'); + + coptions = varargin; + file_in = GiveValueForName(coptions,'nii_file'); + if(isempty(file_in)) + mat_file = GiveValueForName(coptions,'mat_file'); + if(isempty(mat_file)) + error('Need to specify the mandatory argument nii_file or mat_file'); + end + end + + if(isempty(file_in)) + while(true) + temp_folder = fullfile(tempdir,['DKI_' num2str(randi(1e5))]); + if(exist(temp_folder,'dir') < 1) + mkdir(temp_folder) + break + end + end + MRTQuant.EDTI_Data_2_Nii('mat_file',mat_file,'output',fullfile(temp_folder,'data')); + file_in = fullfile(temp_folder,'data.nii'); + MRTQuant.b_Matrix_from_bval_bvec('bval_file',fullfile(temp_folder,'data.bval'),... + 'output',fullfile(temp_folder,'data.txt')); + txtfile = fullfile(temp_folder,'data.txt'); + delete_temp_dir = true; + else + delete_temp_dir = false; + txtfile = GiveValueForName(coptions,'txt_file'); + if(isempty(txtfile)) + txtfile = [file_in(1:end-4) '.txt']; + end + end + + json.ReferenceFile = file_in; + json.ProcessingType = 'Quantification'; + + json.txt_file = txtfile; + + mk_curve_fit = GiveValueForName(coptions,'mk_curve'); + if(isempty(mk_curve_fit)) + mk_curve_fit = 0; + end + + json.mk_curve_fit = mk_curve_fit; + + gmat = load(txtfile); + bvals = sum(gmat(:,[1 4 6]),2); + + option_value = GiveValueForName(coptions,'dki'); + if(~isempty(option_value)) + if((option_value) > 0) + dki_fit = 1; + else + dki_fit = 0; + end + else + dki_fit = 0; + end + + json.dki_fit = dki_fit; + + option_value = GiveValueForName(coptions,'grad_perm'); + if(~isempty(option_value)) + perm = option_value; + else + perm = []; + end + + option_value = GiveValueForName(coptions,'grad_flip'); + if(~isempty(option_value)) + flip = option_value; + else + flip = []; + end + + option_value = GiveValueForName(coptions,'fit_mode'); + if(~isempty(option_value)) + fit_mode = option_value; + else + fit_mode = 'ols'; + end + + json.fit_mode = fit_mode; + + option_value = GiveValueForName(coptions,'dki_constraints'); + if(~isempty(option_value)) + V2 = strsplit(option_value,' '); + if(length(V2) ~= 2) + error('Wrong format. dki_constraints=[Min Max]'); + end + D1 = str2double(V2{1}(2:end)); + D2 = str2double(V2{2}(1:end-1)); + dki_constraints = [D1 D2]; + else + dki_constraints = [-Inf Inf]; + end + + json.dki_constraints = dki_constraints; + + option_value = GiveValueForName(coptions,'output'); + if(~isempty(option_value)) + out_name = option_value; + else + out_name = [file_in(1:end-4) '.mat']; + end + + option_value = GiveValueForName(coptions,'rekindle_kappa'); + if(~isempty(option_value)) + rekindle_kappa = option_value; + else + rekindle_kappa = 6; + end + + option_value = GiveValueForName(coptions,'mask_file'); + if(~isempty(option_value)) + Mask_par = option_value; + json.mask_file = Mask_par; + else + if(isfield(MRIToolkit,'EDTI_settings') && ... + isfield(MRIToolkit.EDTI_settings,'Mask_par')) + Mask_par.tune_NDWI = MRIToolkit.EDTI_settings.Mask_par.tune_NDWI; + Mask_par.tune_DWI = MRIToolkit.EDTI_settings.Mask_par.tune_DWI; + Mask_par.mfs = 7; + else + Mask_par.tune_NDWI = 0.5; + Mask_par.tune_DWI = 0.5; + Mask_par.mfs = 7; + end + end + + if(isempty(perm) || isempty(flip)) + disp('Trying to automatically determine the coordinate systems. Warning: this works only with brain data!'); + while(true) + temp_file = fullfile(tempdir,['MRT_EDTI_' num2str(randi(500000)) '.mat']); + if(exist(temp_file,'file') < 1) + break + end + end + EDTI_Library.E_DTI_model_fit(file_in,txtfile,temp_file,Mask_par,1,1, 'ols',0,[],rekindle_kappa); + + [flips, perms, correct, consistent] = EDTI_Library.E_DTI_Check_for_flip_perm_grads(temp_file); + delete(temp_file) + perm_list = [1 2 3; + 2 1 3; + 3 2 1; + 1 3 2; + 2 3 1; + 3 1 2]; + sign_list = [1 1 1; -1 1 1; 1 -1 1; 1 1 -1]; + if(isempty(flips)) + if(~isdeployed) + warning('Failed to determine the coordinate systems. Please check your results / specify it manually.'); + end + perm = 2; + flip = 2; + else + for p=1:size(perm_list,1) + if(all(perm_list(p,:) == perms)) + break + end + end + for f=1:size(sign_list,1) + if(all(sign_list(f,:) == flips)) + break + end + end + perm = p; + flip = f; + end + end + + json.grad_flip = flip; + json.grad_perm = perm; + json.rekindle_kappa = rekindle_kappa; + + EDTI_Library.E_DTI_model_fit(file_in,txtfile,out_name,Mask_par,perm,flip, fit_mode,dki_fit, dki_constraints, rekindle_kappa); + + if(mk_curve_fit == 1) + disp('Performing M-K curve fit'); + mkcurve_fit_mat(out_name,out_name); + end + + data = MRTQuant.LoadNifti(file_in,1); + orig_hdr = data.hdr; + save(out_name,'-append','orig_hdr'); + + NiftiIO_basic.WriteJSONDescription('output',out_name(1:end-4),'props',json); + + if(delete_temp_dir == true) + rmdir(temp_folder,'s'); + end + end + + function RefitDKIWithMKCurve(varargin) + % This function re-fits an existing .mat file with the MK-curve + % method (Zhang et al. 2019). Input arguments: + % mat_file: The ExpoloreDTI-like .mat file + % output: The output tracts (must be .mat) + + if(isempty(varargin)) + my_help('MRTQuant.RefitDKIWithMKCurve'); + return; + end + + json.CallFunction = 'MRTQuant.RefitDKIWithMKCurve'; + json.Description = my_help('MRTQuant.RefitDKIWithMKCurve'); + + coptions = varargin; + file_in = GiveValueForName(coptions,'mat_file'); + if(isempty(file_in)) + error('Need to specify the input .mat file'); + end + file_out = GiveValueForName(coptions,'output'); + if(isempty(file_out)) + error('Need to specify the output .mat file'); + end + + json.ReferenceFile = file_in; + json.ProcessingType = 'Quantification'; + + mkcurve_fit_mat(file_in,file_out); + NiftiIO_basic.WriteJSONDescription('output',file_out(1:end-4),'props',json); + end + + function PerformDTIBased_FiberTracking(varargin) + % This function is deprecated. Please use MRTTrack.PerformDTIBased_FiberTracking + warning('% This function is deprecated. Please use MRTTrack.PerformDTIBased_FiberTracking'); + end + + function PerformCSD(varargin) + % This function is deprecated. Please use MRTTrack.PerformCSD + warning('% This function is deprecated. Please use MRTTrack.PerformCSD'); + end + + function PerformFODBased_FiberTracking(varargin) + % This function is deprecated. Please use MRTTrack.PerformFODBased_FiberTracking + warning('% This function is deprecated. Please use MRTTrack.PerformFODBased_FiberTracking'); + end + + function Perform_mFOD_FiberTracking(varargin) + % This function is deprecated. Please use MRTTrack.Perform_mFOD_FiberTracking + warning('% This function is deprecated. Please use MRTTrack.Perform_mFOD_FiberTracking'); + end + + function MatMetrics2Nii(mat_file_in,dki_export) + % This function exports the DTI/DKI metrics contained in a .mat + % file to Nifti format. This will export fractional anisotropy (FA), + % mean diffusivity (MD), axial diffusivity (L1), radial diffusivity + % (RD). If the kurtosis export is enabled, mean kurtosis (MK), + % axial kurtosis (AK), radial kurtosis (RK) and kurtosis anisotropy + % (KA) will also be exported. Input arguments are: + % mat_file_in: the target .mat file in ExploreDTI-like format + % dki_export: whether to export kurtosis metrics, as 0 (default) or 1 + + json.CallFunction = 'MRTQuant.MatMetrics2Nii'; + json.Description = my_help('MRTQuant.MatMetrics2Nii'); + + list2export = [1 2 3 6 13 19]; + if(nargin > 1 && dki_export == 1) + list2export = [list2export 46 47 48 49]; + end + CLL = EDTI_Library.E_DTI_Complete_List_var; + [fp,fn] = fileparts(mat_file_in); + if(isempty(fp)) + fp = pwd; + end + KT = load(mat_file_in,'KT'); + has_dki = 0; + if(isfield(KT,'KT')) + has_dki = 1; + end + + DTI_extensions = {'FA','MD','L1','RD','FE','FEFA'}; + DKI_extensions = {'MK','AK','RK','KA'}; + + EDTI_Library.E_DTI_Convert_mat_2_nii(mat_file_in,fp,CLL(list2export)); + + json.ReferenceFile = mat_file_in; + json.ProcessingType = 'Metric'; + + for metric_id=1:length(DTI_extensions) + json.MetricDescription = CLL{metric_id}; + NiftiIO_basic.WriteJSONDescription('output',fullfile(fp,[fn '_' DTI_extensions{metric_id}]),'props',json); + end + if(has_dki == 1 && nargin > 1 && dki_export == 1) + for metric_id=1:length(DKI_extensions) + json.MetricDescription = CLL{metric_id+length(DTI_extensions)}; + NiftiIO_basic.WriteJSONDescription('output',fullfile(fp,[fn '_' DKI_extensions{metric_id}]),'props',json); + end + end + end + + function EnforceJSON(true_or_false) + % Set a global flag which will force all functions to save + % a descriptive .JSON file associated to the processing. + global MRIToolkit; + MRIToolkit.EnforceJSON = true_or_false; + end + + function EnforceNiiGz(true_or_false) + % Set a global flag which will force all functions to save + % compressed niftis. + global MRIToolkit; + MRIToolkit.EnforceNiiGz = true_or_false; + end + + function ReplaceInvalidKurtosisPoints(true_or_false) + % Sets a global flag which enables the replace of clearly bad + % points (kurtosis < 0 or kurtosis >> 10) in the DKI fit. + global MRIToolkit; + MRIToolkit.DKI_cleanup = true_or_false; + end + + function mrt_data = EDTI_Data_2_MRIToolkit(varargin) + % This function loads the content of an ExploreDTI-like .mat file + % and converts it to the data format used in MRIToolkit. mrt_data + % is a struct with fields "img" (the 4D matrix), "bvals" (the b-values), + % "bvecs" (the diffusion gradients), % "mask" (a mask derived from + % EDTI). Input arguments: + % mat_file: the .mat file to import + % no_preproc: 0 (default) or 1. Disables rounding of b-values and + % removal of PIS (physically implausible signals) + % repol: 0 (default) or 1. Replace outliers with fitted datapoints using DTI/DKI + + if(isempty(varargin)) + my_help('MRTQuant.EDTI_Data_2_MRIToolkit'); + return; + end + + coptions = varargin; + file_in = GiveValueForName(coptions,'mat_file'); + if(isempty(file_in)) + error('Need to specify the input .mat file'); + end + no_preproc = GiveValueForName(coptions,'no_preproc'); + if(isempty(no_preproc)) + no_preproc = 0; + end + repol = GiveValueForName(coptions,'repol'); + if(isempty(repol)) + repol = 0; + end + + load(file_in,'DWI','NrB0','b','g','FA','VDims','eigval','outlier','DT','DWIB0'); %,'bval','MDims','DT'); + + if(no_preproc == 0) + B0s = EDTI_Library.E_DTI_Clean_up_B0s_2(DWI, ~isnan(FA), NrB0); % this part cleans the B0s where DWIs intensity> B0s intensity + DWI(1:NrB0) = B0s; + clear B0s; + end + + DWI = EDTI_Library.E_DTI_DWI_cell2mat(DWI); % all the volumes, B0s + DWIs + mask = ~isnan(FA); + + if(repol == 1) + DT = EDTI_Library.E_DTI_DWI_cell2mat(DT); + DT = vec(DT,mask); + EST_DWI = exp(-b*DT); + EST_DWI = unvec(EST_DWI,mask); + for ix=1:size(EST_DWI,4) + EST_DWI(:,:,:,ix) = EST_DWI(:,:,:,ix).*DWIB0; + end +% bval = sum(b(:,[1 4 6]),2); + outlier(:,:,:,1:NrB0) = 0; + DWI(outlier) = EST_DWI(outlier); + end + + if(no_preproc == 1) + bvals = sum(b(:,[1 4 6]),2); + else + bvals = round(sum(b(:,[1 4 6]),2)/100)*100; + end + bvecs = [zeros(NrB0,3);g]; + + mrt_data.img = single(DWI); + mrt_data.bvals = bvals; + mrt_data.bvecs = bvecs; + mrt_data.mask = mask; + mrt_data.VD = VDims; + end + + function EDTI_Data_2_Nii(varargin) + % This function loads the content of an ExploreDTI-like .mat file + % and converts it to .nii/.bval/.bvec + % Input arguments: + % mat_file: the .mat file to import + % output: the output prefix (adds .nii/.bval/.bvec) + % repol: 0 (default) or 1. Replace outliers with fitted datapoints using DTI/DKI + if(isempty(varargin)) + my_help('MRTQuant.EDTI_Data_2_Nii'); + return; + end + + coptions = varargin; + file_in = GiveValueForName(coptions,'mat_file'); + if(isempty(file_in)) + error('Need to specify the input .mat file'); + end + + output = GiveValueForName(coptions,'output'); + if(isempty(output)) + error('Need to specify the output prefix'); + end + + repol = GiveValueForName(coptions,'repol'); + if(isempty(repol)) + repol = 0; + end + + mrt_data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',file_in,'no_preproc',1,'repol',repol); + MRTQuant.WriteNifti(mrt_data,[output '.nii']); + + bval = mrt_data.bvals'; + bvec = mrt_data.bvecs'; + + fb = fopen([output '.bval'],'wt'); + for ij=1:length(bval) + fprintf(fb,'%f ', bval(ij)); + end + fclose(fb); + + fb = fopen([output '.bvec'],'wt'); + for ik=1:size(bvec,1) + for ij=1:size(bvec,2) + fprintf(fb,'%f ',bvec(ik,ij)); + end + fprintf(fb,'%s',newline); + end + fclose(fb); + + end + + function PerformMocoEPI(varargin) + % This function performs the motion/eddy currents/EPI distortions + % correction using Elastix. Input arguments: + % mat_file: The ExpoloreDTI-like .mat file to correct + % do_moco: 0-1 disabling/enabling the motion/eddy currents correction part + % epi_tgt: The T1/T2 to use for EPI correction (via registration). + % If set, this automatically enables the registration step + % constraint_epi: a vector in the form [0 1 0] enabling or disabling + % LR/AP/FH deformations + % epi_reg_mode: Which image to use for registration toward the epi_tgt + % 'b0' (use the first b=0s/mm2, default), 'avg_dwis' (use the average + % of all DWIs), 'fa' (use the fractional anisotropy) + % epi_reg_type: 'linear' (rigid transformation) or 'nonlinear' + % (default) + % use_normcorr: 0-1 use normalized correlation in place of mutual + % information. The first is useful for images with similar + % contrasts (e.g. T1-FA), whereas mutual information typically works well + % both with similar and with different contrasts. + % fit_mode: force a new fit_mode, ols, wls, nls, rekindle + % output: output folder + % failsafe: default false. Disables some registration options that can fail + % in specific scenarios (reduced FOV, low number of voxels) + + global MRIToolkit; + + if(isempty(varargin)) + my_help('MRTQuant.PerformMocoEPI'); + return; + end + + json.CallFunction = 'MRTQuant.PerformMocoEPI'; + json.Description = my_help('MRTQuant.PerformMocoEPI'); + + coptions = varargin; + file_in = GiveValueForName(coptions,'mat_file'); + if(isempty(file_in)) + error('Need to specify the input .mat file'); + end + + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + basic_info = load(file_in,'par'); + if(~isfield(basic_info,'par')) + % warning('This MAT file is missing essential information. Please, reprocess it with MRIToolkit'); + basic_info.par.clean_up_PIS = 1; + basic_info.par.ROBUST_option = 1; + basic_info.par.RE.rel_convergence = 1e-3; + basic_info.par.RE.max_iter = 20; + basic_info.par.RE.kappa = 6; + basic_info.par.DKI_constraints.do_it = 1; + basic_info.par.DKI_constraints.constr1 = [-Inf Inf]; + basic_info.par.DKI_constraints.constr2 = [-Inf Inf]; + basic_info.par.TE = 1; + end + + option_value = GiveValueForName(coptions,'fit_mode'); + if(~isempty(option_value)) + fit_mode = option_value; + if(strcmpi(fit_mode,'ols')) + basic_info.par.TE = 1; + elseif(strcmpi(fit_mode,'wls')) + basic_info.par.TE = 2; + elseif(strcmpi(fit_mode,'nls')) + basic_info.par.TE = 3; + elseif(strcmpi(fit_mode,'rekindle')) + basic_info.par.TE = 4; + end + end + + par = basic_info.par; + par.cust_mask.NS = ''; + par.cust_mask.TS = ''; + try + mpar = load(file_in,'Mask_par'); + par.mask_P.NS.mfs = 5; + par.mask_P.NS.NDWI = mpar.Mask_par.tune_NDWI; + par.mask_P.NS.DWI = mpar.Mask_par.tune_DWI; + par.mask_P.TS.mfs = 5; + par.mask_P.TS.NDWI = mpar.Mask_par.tune_NDWI; + par.mask_P.TS.DWI = mpar.Mask_par.tune_DWI; + catch + par.mask_P.NS.mfs = 5; + par.mask_P.NS.NDWI = 0.7; + par.mask_P.NS.DWI = 0.7; + par.mask_P.TS.mfs = 5; + par.mask_P.TS.NDWI = 0.7; + par.mask_P.TS.DWI = 0.7; + end + par.R2D.type = 0; + par.R2D.FN = ''; + par.R2D.contrast = 1; + par.R2D.failsafe = 0; + par.Num_iter = 1000; + par.Num_samp = 2000; + par.Hist_bin = 64; + par.Num_Resol = 1; + par.use_f_mask = 1; + par.Regul = 0; + par.suc = 1; + par.suff.NS = '_MD_C_native.mat'; + par.suff.TS = '_MD_C_trafo.mat'; + par.DTI_f_in = file_in; + par.no_GUI = 0; + par.clean_up_PIS = 1; + par.EPI.Num_iter = 1000; + par.EPI.Num_samp = 20000; + par.EPI.Hist_bin = 64; + par.EPI.Num_Resol = 4; + par.EPI.Grid_Spacing = [30 30 30]; + par.EPI.Deriv_Scales = [1 1 1]; + par.EPI.use_f_mask = 1; + te = par.TE; + par = rmfield(par,'TE'); + par.TE.NS = te; + par.TE.TS = te; + + option_value = GiveValueForName(coptions,'do_moco'); + if(~isempty(option_value)) + if(option_value == 0) + par.DOF = 1; + else + par.DOF = 3; + end + else + par.DOF = 3; + end + + option_value = GiveValueForName(coptions,'failsafe'); + if(~isempty(option_value)) + par.R2D.failsafe = option_value; + end + + option_value = GiveValueForName(coptions,'epi_tgt'); + if(~isempty(option_value)) + par.R2D.FN = option_value; + else + par.R2D.type = 0; + end + + option_value = GiveValueForName(coptions,'epi_reg_type'); + if(~isempty(par.R2D.FN) && isempty(option_value)) + par.R2D.type = 3; + else + if(strcmpi(option_value,'linear')) + par.R2D.type = 1; + elseif(strcmpi(option_value,'nonlinear')) + par.R2D.type = 3; + end + end + + option_value = GiveValueForName(coptions,'constraint_epi'); + if(~isempty(option_value)) + if(~ischar(option_value)) + par.EPI.Deriv_Scales = [(option_value(1)) (option_value(2)) (option_value(3))]; + else + par.EPI.Deriv_Scales = [str2double(option_value(1)) str2double(option_value(2)) str2double(option_value(3))]; + end + end + + option_value = GiveValueForName(coptions,'epi_reg_mode'); + if(~isempty(option_value)) + if(strcmpi(option_value,'b0')) + par.R2D.contrast = 1; + elseif(strcmpi(option_value,'avg_dwis')) + par.R2D.contrast = 3; + elseif(strcmpi(option_value,'fa')) + par.R2D.contrast = 2; + else + error(['Unexpected epi_reg_mode value: ' option_value]); + end + end + + option_value = GiveValueForName(coptions,'output'); + if(~isempty(option_value)) + out_folder = option_value; + else + out_folder = fileparts(file_in); + if(isempty(out_folder) || strcmp(out_folder,filesep)) + out_folder = pwd; + end + end + + par.mask_P.TE.NS = par.TE; + par.mask_P.TE.TS = par.TE; + + option_value = GiveValueForName(coptions,'use_normcorr'); + if(~isempty(option_value) && ... + ((isnumeric(option_value) && option_value == 1) ... + || isstring(option_value) && strcmpi(option_value,'1'))) + par.use_NC = 1; + end + + par.temp_folder = fullfile(tempdir,['MRT_' num2str(randi(150)) '_' num2str(randi(150)) '_' num2str(randi(150))]); + if(strcmp(par.temp_folder(end),'/')) + par.temp_folder = par.temp_folder(1:end-1); + end + + par.E_path = MRIToolkit.Elastix.ElastixCMD; + par.T_path = MRIToolkit.Elastix.TransformixCMD; + + par.MDC_constr_fac = 6; + + par.Interpol = 1; + + if isempty(par.E_path) || isempty(par.T_path) + if(~isdeployed) + par.suc=0; + disp('Cannot find an appropriate Elastix build...') + return; + end + end + + par.out_folder = out_folder; + + % h_w = EDTI_Library.my_waitbar(0,'Checking data...');pause(0.5) + DTI_files = EDTI_Library.E_DTI_SMECEPI_Get_input_DTI(par); + % EDTI_Library.my_waitbar(1);close(h_w);pause(0.01); + + if isempty(DTI_files) + disp('Could not find relevant *.mat files... ') + return; + end + + suc = EDTI_Library.E_DTI_do_initial_check_reg_tra_files(par.E_path,par.T_path); + + if suc==0 + if par.no_GUI==0 + % EDTI_Library.my_msgbox('See command prompt for more info...','Error...','Modal') + end + return; + end + + if(isfield(MRIToolkit,'EnforceNiiGz')) + enforce_niigz = MRIToolkit.EnforceNiiGz; + else + enforce_niigz = false; + end + MRTQuant.EnforceNiiGz(false); + + TS = tic; + for i=1:length(DTI_files) + disp('Processing file:') + disp([DTI_files{i} ' ...']) + EDTI_Library.E_DTI_SMECEPI_Single(DTI_files{i},par) + disp('Done!') + end + + MRTQuant.EnforceNiiGz(enforce_niigz); + + json.parameters = par; + [~,filename] = fileparts(file_in); + out_name = fullfile(out_folder,[filename(1:end-4) '_MD_C_trafo']); + NiftiIO_basic.WriteJSONDescription('output',out_name,'props',json); + + disp('Processing finished!') + + t=toc(TS); + if t<3600 + m = t/60; + disp(['Total computation time was ' num2str(m) ' minutes.']) + elseif t>3600 && t<(3600*24) + h = t/3600; + disp(['Total computation time was ' num2str(h) ' hours.']) + else + d = t/(3600*24); + disp(['Total computation time was ' num2str(d) ' days.']) + end + end + + function PerformMocoEPI_FSL(varargin) + % This function performs the motion/eddy currents/EPI distortions + % correction using FSL. FSL must be installed and setup (see global variable MRIToolkit). + % Input arguments: + % mat_file: The ExpoloreDTI-like .mat file to correct or + % nii_file: The Nifti file to correct. If using this, also specify + % bval_file and bvec_file + % bval_file: The corresponding .bval file (only in combination with nii_file) + % bvec_file: The corresponding .bvec file (only in combination with nii_file) + % txt_file: as alternative to bval/bvec + % topup_nii: a .nii_file acquired with reversed phase encoding (optional). + % If this file has less encodings than mat_file/nii_file, it is + % only used to estimate the distortion correction field. + % Otherwise, it is passed along to Eddy for full reconstruction. + % topup_dir: 1 for LR, 2 for AP (default), 3 for FH + % repol: 1 to enable automated outlier rejection (default = 0) + % Only reversed b=0s/mm2 are supported at this stage + % output: output file + + global MRIToolkit; + + if(isempty(varargin)) + my_help('MRTQuant.PerformMocoEPI_FSL'); + return; + end + + json.CallFunction = 'MRTQuant.PerformMocoEPI_FSL'; + json.Description = my_help('MRTQuant.PerformMocoEPI_FSL'); + + coptions = varargin; + mat_file = GiveValueForName(coptions,'mat_file'); + if(isempty(mat_file)) + nii_file = GiveValueForName(coptions,'nii_file'); + if(isempty(nii_file)) + error('Need to specify the input .mat or .nii file'); + end + txt_file = GiveValueForName(coptions,'txt_file'); + bval_file = GiveValueForName(coptions,'bval_file'); + bvec_file = GiveValueForName(coptions,'bvec_file'); + if(isempty(bval_file) || isempty(bvec_file)) + if(isempty(txt_file)) + error('Need to specify the input .bval or .bvec or .txt file'); + end + end + else + nii_file = ''; + bval_file = ''; + bvec_file = ''; + txt_file = ''; + end + + json.ReferenceFile = nii_file; + json.ProcessingType = 'Preprocessing'; + + topup_nii = GiveValueForName(coptions,'topup_nii'); + topup_dir = GiveValueForName(coptions,'topup_dir'); + if(isempty(topup_dir)) + topup_dir = 2; + end + + output = GiveValueForName(coptions,'output'); + if(isempty(output)) + error('Need to specify the output .nii file') + end + + repol = GiveValueForName(coptions,'repol'); + if(isempty(repol)) + repol = 0; + end + + % Check if FSL works + if(ispc) + % Check if the provided location works + [a,~] = system(['bash -c "' MRIToolkit.FSL '/bin/topup"']); + if(a ~= 0) + [a,~] = system('bash -c ". ~/.profile;. ~/.bashrc; topup"'); + if(a > 1) + error('The Windows Subsystem for Linux is not correctly installed, or the provided FSL path is not correct.') + else + warning('The Windows Subsystem for Linux is not correctly installed, or the provided FSL path is not correct. Using the FSL installation found in the PATH') + base_cmd = 'bash -c ". ~/.profile;. ~/.bashrc;'; + end + else + base_cmd = ['bash -c "' MRIToolkit.FSL '/bin/']; + end + else + [a,~] = system(['' MRIToolkit.FSL '/bin/topup']); + if(a ~= 0 && a ~= 1) + [a,~] = system('". ~/.profile;. ~/.bashrc; topup'); + if(a ~= 0) + error('Cannot find FSL in the provided path.') + else + warning('The Windows Subsystem for Linux is not correctly installed, or the provided FSL path is not correct. Using the FSL installation found in the PATH') + base_cmd = '. ~/.profile;. ~/.bashrc;'; + end + else + base_cmd = ['' MRIToolkit.FSL '/bin/']; + end + end + + while(true) + temp_direc = fullfile(tempdir,['FSL_' num2str(randi(1e5))]); + if(exist(temp_direc,'dir') < 1) + mkdir(temp_direc) + break + end + end + + if(isempty(txt_file) && isempty(mat_file)) + bvals = load(bval_file); + copyfile(bval_file,fullfile(temp_direc,'bvals')); + copyfile(bvec_file,fullfile(temp_direc,'bvecs')); + else + if(isempty(mat_file)) + [bvals,bvecs] = MRTQuant.bval_bvec_from_b_Matrix(load(txt_file)); + else + g = load(mat_file,'b'); + [bvals,bvecs] = MRTQuant.bval_bvec_from_b_Matrix(g.b); + end + t_bvals = bvals'; + t_bvecs = bvecs'; + save(fullfile(temp_direc,'bvals'),'t_bvals','-ascii'); + save(fullfile(temp_direc,'bvecs'),'t_bvecs','-ascii'); + end + if(~isempty(nii_file)) + MRTQuant.ApplyRescaleSlope('nii_file',nii_file,'output',fullfile(temp_direc,'data.nii')); + MRTQuant.ConformSpatialDimensions('nii_file',fullfile(temp_direc,'data.nii'),'output',fullfile(temp_direc,'data.nii')); + data = MRTQuant.LoadNifti(fullfile(temp_direc,'data.nii')); + else + data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',mat_file,'no_preproc',1); + MRTQuant.WriteNifti(data,fullfile(temp_direc,'data.nii')); + end + + if(~isempty(topup_nii)) + % Run topup first + % Prepare the b = 0s/mm2 images + + bval_reverse_file = strrep(topup_nii,'.nii.gz','.nii'); + bval_reverse_file = strrep(bval_reverse_file,'.nii','.bval'); + bval_reverse_file = strrep(bval_reverse_file,'.nii','.bval'); + if(exist(bval_reverse_file,'file') < 1) + disp(['Cannot find a .bval file corresponding to ' topup_nii '(same name but different extension)']); + warning(['Assuming all content of ' topup_nii ' are b0s. Please double check!']); + info = MRTQuant.LoadNifti(topup_nii); + nvols = size(info.img,4); + b0s = zeros(1,nvols); + save(bval_reverse_file,'b0s','-ascii'); + end + rev_bvals = load(bval_reverse_file); + b0s = bvals < 50; + rev_b0s = rev_bvals < 50; + if(sum(b0s) < 1 || sum(rev_b0s) < 1) + error('Not enough b < 50 s/mm2 in the provided data to perform TOPUP correction.') + end + MRTQuant.ConformSpatialDimensions('nii_file',topup_nii,'output',fullfile(temp_direc,'data_rev.nii')); + + b0s = find(b0s==1,1);% Just using the first b0 + rev_b0s = find(rev_b0s==1,1);% Just using the first b0 + + data_rev = MRTQuant.LoadNifti(fullfile(temp_direc,'data_rev.nii')); + data.img = data.img(:,:,:,b0s); + data_rev.img = data_rev.img(:,:,:,rev_b0s); + data.img = cat(4,data.img,data_rev.img); + MRTQuant.WriteNifti(data,fullfile(temp_direc,'data_topup.nii')); + + % Prepare the descriptor file + pe_inst_1 = [0 0 0 0.01]; + pe_inst_2 = [0 0 0 0.01]; + pe_inst_1(topup_dir) = 1; + pe_inst_2(topup_dir) = -1; + pe_inst_1 = repmat(pe_inst_1,sum(b0s>0),1); + pe_inst_2 = repmat(pe_inst_2,sum(rev_b0s>0),1); + pe_inst = cat(1,pe_inst_1,pe_inst_2); + save(fullfile(temp_direc,'topup.txt'),'pe_inst','-ascii'); + + % Run topup + if(ispc) + % remap for BASH + b_temp = strrep(temp_direc,'C:','c'); + b_temp = strrep(b_temp,'D:','d'); + b_temp = strrep(b_temp,'E:','e'); + b_temp = strrep(b_temp,'F:','f'); + b_temp = strrep(b_temp,'\','/'); + b_temp = ['/mnt/' b_temp]; + + cmd = [base_cmd 'topup --imain=' b_temp '/data_topup.nii' ... + ' --datain=' b_temp '/topup.txt' ... + ' --out=' b_temp '/topup' ... + ' --iout=' b_temp '/unwarped_b0s.nii -v ' ... + ' --config=b02b0.cnf' '"']; + else + cmd = [base_cmd 'topup --imain=' fullfile(temp_direc,'data_topup.nii') ... + ' --datain=' fullfile(temp_direc,'topup.txt') ... + ' --out=' fullfile(temp_direc,'topup') ... + ' --iout=' fullfile(temp_direc,'unwarped_b0s.nii') ' -v --config=b02b0.cnf']; + end + + if(ismac) + system(['. ~/.zprofile; ' cmd]); + else + system(cmd); + end + else + % Prepare the descriptor file + pe_inst_1 = [0 1 0 0.01]; + save(fullfile(temp_direc,'topup.txt'),'pe_inst_1','-ascii'); + end + + % Run EDDY + + if(isempty(topup_nii) || length(rev_bvals) ~= length(bvals)) + indices = ones(1,length(bvals)); + else + indices = [ones(1,length(bvals)) (sum(b0s>0)+1)*ones(1,length(bvals))]; + % Concatenate Data + data = MRTQuant.LoadNifti(fullfile(temp_direc,'data.nii')); + data_rev = MRTQuant.LoadNifti(fullfile(temp_direc,'data_rev.nii')); + B0_1 = data.img(:,:,:,find(bvals == min(bvals),1)); + B0_2 = data_rev.img(:,:,:,find(rev_bvals == min(rev_bvals),1)); + R = nanmean(B0_1(:))/nanmean(B0_2(:)); % Ensure that the scaling is consistent + data.img = cat(4,data.img,data_rev.img*R); + + bvals = [bvals' rev_bvals]; + save(fullfile(temp_direc,'bvals'),'bvals','-ascii'); + bvecs = [bvecs' load(strrep(bval_reverse_file,'.bval','.bvec'))]; + save(fullfile(temp_direc,'bvecs'),'bvecs','-ascii'); + + MRTQuant.WriteNifti(data,fullfile(temp_direc,'data.nii'),0); + end + save(fullfile(temp_direc,'indices.txt'),'indices','-ascii'); + + % Derive a mask + MRTQuant.b_Matrix_from_bval_bvec('bval_file',fullfile(temp_direc,'bvals'),... + 'bvec_file',fullfile(temp_direc,'bvecs'),'output',fullfile(temp_direc,'data.txt')); + MRTQuant.PerformDTI_DKIFit('nii_file',fullfile(temp_direc,'data.nii'),... + 'txt_file',fullfile(temp_direc,'data.txt'),... + 'output',fullfile(temp_direc,'data.mat')); + mat_content = load(fullfile(temp_direc,'data.mat'),'VDims','FA'); + mask.VD = mat_content.VDims; + mask.img = single(~isnan(mat_content.FA)); + MRTQuant.WriteNifti(mask,fullfile(temp_direc,'mask.nii')); + + if(ispc) + % remap for BASH (WSL) + b_temp = strrep(temp_direc,'C:','c'); + b_temp = strrep(b_temp,'D:','d'); + b_temp = strrep(b_temp,'E:','e'); + b_temp = strrep(b_temp,'F:','f'); + b_temp = strrep(b_temp,'\','/'); + b_temp = ['/mnt/' b_temp]; + + cmd = [base_cmd 'eddy --imain=' b_temp '/data.nii' ... + ' --bvals=' b_temp '/bvals' ... + ' --bvecs=' b_temp '/bvecs' ... + ' --acqp=' b_temp '/topup.txt' ... + ' --index=' b_temp '/indices.txt' ... + ' --bvals=' b_temp '/bvals' ... + ' --mask=' b_temp '/mask.nii' ... + ' --out=' b_temp '/eddy_corrected' ... + ' --data_is_shelled -v ' + ]; + + if(repol > 0) + cmd = [cmd ' --repol']; + end + + if(~isempty(topup_nii)) + cmd = [cmd ' --topup=' b_temp '/topup']; + end + + cmd = [cmd '"']; + else + cmd = [base_cmd 'eddy --imain=' fullfile(temp_direc,'data.nii') ... + ' --bvals=' fullfile(temp_direc,'bvals') ... + ' --bvecs=' fullfile(temp_direc,'bvecs') ... + ' --acqp=' fullfile(temp_direc,'topup.txt') ... + ' --index=' fullfile(temp_direc,'indices.txt') ... + ' --bvals=' fullfile(temp_direc,'bvals') ... + ' --mask=' fullfile(temp_direc,'mask.nii') ... + ' --out=' fullfile(temp_direc,'eddy_corrected') ... + ' --data_is_shelled -v' + ]; + + if(repol > 0) + cmd = [cmd ' --repol']; + end + + if(~isempty(topup_nii)) + cmd = [cmd ' --topup=' fullfile(temp_direc,'topup')]; + end + + if(ismac) + cmd = ['. ~/.zprofile; ' cmd]; + end + end + system(cmd); + + % Copy results + if(contains(output,'.nii')) + if(~contains(output,'.gz')) + output = [output '.gz']; + end + else + output = [output '.nii.gz']; + end + if(exist(fullfile(temp_direc,'eddy_corrected.nii.gz'),'file') < 1) + cmd = strrep(cmd,';eddy ',';eddy_openmp '); + system(cmd); + end + copyfile(fullfile(temp_direc,'eddy_corrected.nii.gz'),output); + copyfile(fullfile(temp_direc,'eddy_corrected.eddy_rotated_bvecs'),... + strrep(output,'.nii.gz','.bvec')); + copyfile(fullfile(temp_direc,'bvals'),strrep(output,'.nii.gz','.bval')) + eddy_files = dir(fullfile(temp_direc,'eddy_corrected.*')); + for fid=1:length(eddy_files) + if(contains(eddy_files(fid).name,'.nii.gz')) + continue + end + [~,~,ext] = fileparts(eddy_files(fid).name); + copyfile(fullfile(eddy_files(fid).folder,eddy_files(fid).name),... + strrep(output,'.nii.gz',ext)); + end + if(~isempty(topup_nii)) + copyfile(fullfile(temp_direc,'topup_fieldcoef.nii.gz'),... + strrep(output,'.nii.gz','_topupfield.nii.gz')); + end + + % Delete temporary folders + rmdir(temp_direc,'s'); + + json.Topup = topup_nii; + json.TopupDir = topup_dir; + json.base_cmd = base_cmd; + [out_folder,filename] = fileparts(nii_file); + filename = strrep(filename,'.nii',''); + out_name = fullfile(out_folder,[filename '_MD_C_trafo']); + NiftiIO_basic.WriteJSONDescription('output',out_name,'props',json); + + disp('Processing finished!') + end + + function SelectVolumesWithBvals(varargin) + % Select a subset of volumes in 4D .nii file based on their diffusion weighting. + % The function expects a .mat file, or a .bval/.bvec files couple or a .txt (b-matrix) file in the folder + % of the .nii file and with the same name + % Input arguments: + % nii_file: the .nii file of the original data + % mat_file: the .mat file of the original data + % bvals: an array containing the b-values to select, e.g. [0 1000] + % output: the new .nii file containing a subset of the volumes. + % tol: the tolerance around the specified b-values + if(isempty(varargin)) + my_help('MRTQuant.SelectVolumesWithBvals'); + return; + end + + json.CallFunction = 'MRTQuant.SelectVolumesWithBvals'; + json.Description = my_help('MRTQuant.SelectVolumesWithBvals'); + + coptions = varargin; + file_in = GiveValueForName(coptions,'mat_file'); + if(isempty(file_in)) + file_in = GiveValueForName(coptions,'nii_file'); + if(isempty(file_in)) + error('Need to specify the input .nii or .mat file'); + end + end + + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + bvals_list = GiveValueForName(coptions,'bvals'); + if(isempty(bvals_list)) + error('Need to specify the bvals to keep'); + end + json.bvals_list = bvals_list; + + outname = GiveValueForName(coptions,'output'); + if(isempty(outname)) + error('Need to specify the output .nii file'); + end + tol = GiveValueForName(coptions,'tol'); + + use_txt = 0; + if(contains(file_in(end-4:end),'mat')) + dta = load(file_in,'DWI','b','VDims'); + [bval,bvec] = MRTQuant.bval_bvec_from_b_Matrix(dta.b); + bval = bval'; + bvec = bvec'; + data = EDTI_Library.E_DTI_DWI_cell2mat(dta.DWI); + VD = dta.VDims; + else + [data,VD] = EDTI_Library.E_DTI_read_nifti_file(file_in); + if(exist([file_in(1:end-4) '.bval'],'file')) + bval = load([file_in(1:end-4) '.bval']); + bvec = load([file_in(1:end-4) '.bvec']); + else + use_txt = 1; + bmat = load([file_in(1:end-4) '.txt']); + [bval,~] = MRTQuant.bval_bvec_from_b_Matrix(bmat); + end + end + IX = false(size(bval)); + for ij=1:length(bvals_list) + if(~isempty(tol)) + u_tol = tol; + else + u_tol = max(1,0.1*bvals_list(ij)); + end + IX(abs(round(bval)-bvals_list(ij)) <= u_tol) = true; + end + data = data(:,:,:,IX); + bval = bval(IX); + if(use_txt == 1) + bmat = bmat(IX,:); + save([outname(1:end-4) '.txt'],'bmat','-ascii'); + else + bvec = bvec(:,IX); + save([outname(1:end-4) '.bvec'],'bvec','-ascii'); + save([outname(1:end-4) '.bval'],'bval','-ascii'); + end + EDTI_Library.E_DTI_write_nifti_file(data,VD,outname); + + NiftiIO_basic.WriteJSONDescription('output',outname(1:end-4),'props',json); + end + + function ConcatenateVolumes(varargin) + % Concatenate multiple 4D volumes along the 4-th dimension + % Assumes corresponding .txt files or .bval / .bvec to be present + % with the same filename + % Input arguments: + % nii_files: a cell array containing a list of .nii files separated by comma + % output: the new .nii file containing a subset of the volumes. + % scale_wb0s: 0 or 1 (default 0). Whether to ensure intensities + % are consistent across scans by looking at b0s + if(isempty(varargin)) + my_help('MRTQuant.ConcatenateVolumes'); + return; + end + + json.CallFunction = 'MRTQuant.ConcatenateVolumes'; + json.Description = my_help('MRTQuant.ConcatenateVolumes'); + + coptions = varargin; + file_in = GiveValueForName(coptions,'nii_files'); + if(isempty(file_in)) + error('Need to specify the input .nii files'); + end + + scale_wb0s = GiveValueForName(coptions,'scale_wb0s'); + if(isempty(scale_wb0s)) + scale_wb0s = 0; + end + + outname = GiveValueForName(coptions,'output'); + if(isempty(outname)) + error('Need to specify output name'); + end + + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + volumes = file_in; + if(length(volumes) < 2) + error('Please specify at least 2 files to merge'); + end + + final_vol.img = []; + final_txt = []; + final_bv = []; + use_txt_or_bvalbvec = 1; + + for volid=1:length(volumes) + ON = fullfile(MRT_Library.CreateTemporaryDir(),'1.nii'); + MRTQuant.ApplyRescaleSlope('nii_file',volumes{volid},... + 'output',ON); + MRTQuant.ConformSpatialDimensions('nii_file',ON,... + 'output',ON); + data = MRTQuant.LoadNifti(ON); + delete(ON); + + if(contains(volumes{volid},'nii.gz')) + bmat = strrep(volumes{volid},'nii.gz','txt'); + elseif(contains(volumes{volid},'nii')) + bmat = strrep(volumes{volid},'nii','txt'); + end + if(exist(bmat,'file') < 1) + disp('Using bval/bvec instead of txt'); + use_txt_or_bvalbvec = 2; + try + bval = load(strrep(bmat,'.txt','.bval')); + bvec = load(strrep(bmat,'.txt','.bvec')); + catch + disp(['Cannot find txt or bval/bvec for ' ... + volumes{volid} ', skipping']); + continue + end + else + bmat = load(bmat); + end + + if(~isempty(final_vol.img)) + if(use_txt_or_bvalbvec == 1) + bv = sum(final_txt(:,[1 4 6]),2); + bvp = sum(bmat(:,[1 4 6]),2); + b0s_pre = bv <= min(bv); + b0s_post = bvp <= min(bvp); + final_txt = cat(1,final_txt,bmat); + else + b0s_pre = final_bv(:,end) <= min(final_bv(:,end)); + b0s_post = bval <= min(bval); + final_bv = cat(1,final_bv,[bvec' bval']); + end + if(scale_wb0s == 1) % Ensure intensities are consistent across scans + b0s_pre = mean(final_vol.img(:,:,:,b0s_pre),4); + b0s_post = mean(data.img(:,:,:,b0s_post),4); + V_pre = mean(b0s_pre(:)); + V_post = mean(b0s_post(:)); + R = V_pre/V_post; + else + R = 1; + end + final_vol.img = cat(4,final_vol.img,data.img*R); + else + final_vol.img = data.img; + final_vol.VD = data.VD; + if(use_txt_or_bvalbvec == 1) + final_txt = bmat; + else + final_bv = [bvec' bval']; + end + end + end + + MRTQuant.WriteNifti(final_vol,outname,0); + if(use_txt_or_bvalbvec == 1) + outname = strrep(outname,'.nii.gz','.txt'); + outname = strrep(outname,'.nii','.txt'); + save(outname,'final_txt','-ascii'); + outname = strrep(outname,'.txt',''); + else + outname = strrep(outname,'.nii.gz','.nii'); + outname = strrep(outname,'.nii','.bval'); + bv = final_bv(:,end)'; + save(outname,'bv','-ascii'); + outname = strrep(outname,'.bval','.bvec'); + bv = final_bv(:,1:3)'; + save(outname,'bv','-ascii'); + outname = strrep(outname,'.bvec',''); + end + NiftiIO_basic.WriteJSONDescription('output',outname(1:end-4),'props',json); + end + + function SelectVolumesWithIndices(varargin) + % Select a subset of volumes in 4D .nii file based on their 4d + % order. + % The function expects a .bval/.bvec files couple or a .txt (b-matrix) file in the folder + % of the .nii file and with the same name + % Input arguments: + % nii_file: the .nii file of the original data + % mat_file: the .mat file to load the data from (alternative to + % nii_file) + % indices: an array containing the b-values to select, e.g. [1 3 7 15 ...] + % output: the new .nii file containing a subset of the volumes. + if(isempty(varargin)) + my_help('MRTQuant.SelectVolumesWithIndices'); + return; + end + + json.CallFunction = 'MRTQuant.SelectVolumesWithIndices'; + json.Description = my_help('MRTQuant.SelectVolumesWithIndices'); + + coptions = varargin; + file_in = GiveValueForName(coptions,'nii_file'); + using_nii = 1; + if(isempty(file_in)) + file_in = GiveValueForName(coptions,'mat_file'); + if(isempty(file_in)) + error('Need to specify the input .nii or .mat file'); + end + using_nii = 0; + end + + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + indices_list = GiveValueForName(coptions,'indices'); + if(isempty(indices_list)) + error('Need to specify the indices to select'); + end + json.indices_list = indices_list; + + outname = GiveValueForName(coptions,'output'); + if(isempty(outname)) + error('Need to specify the output .nii file'); + end + + use_txt = 0; + if(using_nii == 1) + if(exist([file_in(1:end-4) '.bval'],'file')) + bval = load([file_in(1:end-4) '.bval']); + bvec = load([file_in(1:end-4) '.bvec']); + else + use_txt = 1; + bmat = load([file_in(1:end-4) '.txt']); + [bval,bvec] = MRTQuant.bval_bvec_from_b_Matrix(bmat); + end + end + IX = indices_list; + if(using_nii == 1) + [data,VD] = EDTI_Library.E_DTI_read_nifti_file(file_in); + else + opt = load(file_in,'DWI','VDims','b'); + VD = opt.VDims; + data = EDTI_Library.E_DTI_DWI_cell2mat(opt.DWI); + bmat = opt.b; + [bval,bvec] = MRTQuant.bval_bvec_from_b_Matrix(bmat); + clear opt + end + data = data(:,:,:,IX); + bval = bval(IX); + bvec = bvec(:,IX); + if(use_txt == 1) + bmat = bmat(IX,:); + save([outname(1:end-4) '.txt'],'bmat','-ascii'); + else + save([outname(1:end-4) '.bvec'],'bvec','-ascii'); + save([outname(1:end-4) '.bval'],'bval','-ascii'); + end + EDTI_Library.E_DTI_write_nifti_file(data,VD,outname); + + NiftiIO_basic.WriteJSONDescription('output',outname(1:end-4),'props',json); + end + + function [nrb0s,nrdwis,b0s_indices,dwis_indices] = GetNumOfB0sDWIs(varargin) + % Gets the number of b=0s/mm2 and of dwis from a .mat or .nii + % Input arguments (nii_file or mat_file are exclusive): + % nii_file: .nii to inspect. a .txt or .bval / .bvec in the same folder and + % with the same name specifying the diffusion gradients are expected. + % mat_file: .mat file to inspect. + % b0_tol: the minimum b=0s/mm2 to be treated as 0. default = 5s/mm2 + if(isempty(varargin)) + my_help('MRTQuant.GetNumOfB0sDWIs'); + nrb0s = []; + nrdwis = []; + b0s_indices = []; + dwis_indices = []; + return; + end + + coptions = varargin; + b0_tol = GiveValueForName(coptions,'b0_tol'); + if(isempty(b0_tol)) + b0_tol = 5; + end + + file_in = GiveValueForName(coptions,'nii_file'); + if(~isempty(file_in)) + if(exist([file_in(1:end-4) '.bval'],'file')) + bvals = load([file_in(1:end-4) '.bval']); + else + bvals = load([file_in(1:end-4) '.txt']); + bvals = sum(bvals(:,[1 4 6]),2); + end + b0s_indices = find(bvals <= b0_tol); + dwis_indices = find(bvals > b0_tol); + nrb0s = length(b0s_indices); + nrdwis = length(dwis_indices); + return; + end + + file_in = GiveValueForName(coptions,'mat_file'); + if(~isempty(file_in)) + bvals = load(file_in(1:end-4), 'b'); + bvals = sum(bvals.b(:,[1 4 6]),2); + b0s_indices = find(bvals <= b0_tol); + dwis_indices = find(bvals > b0_tol); + nrb0s = length(b0s_indices); + nrdwis = length(dwis_indices); + return; + end + + end + + function PerformGibbsRingingCorrection(varargin) + % Performs the Gibbs ringing correction on b=0s/mm2 images with a + % TV filter. Input arguments: + % nii_file: .nii file to correct (sorted in ascending b-value + % order) + % output: Name of the output .nii + if(isempty(varargin)) + my_help('MRTQuant.PerformGibbsRingingCorrection'); + return; + end + + json.CallFunction = 'MRTQuant.PerformGibbsRingingCorrection'; + json.Description = my_help('MRTQuant.PerformGibbsRingingCorrection'); + + coptions = varargin; + file_in = GiveValueForName(coptions,'nii_file'); + if(isempty(file_in)) + error('Missing mandatory argument nii_file'); + end + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + output = GiveValueForName(coptions,'output'); + if(isempty(file_in)) + error('Missing mandatory argument output'); + end + EDTI_Library.GibbsRingingCorrection(file_in,output); + + if(exist([file_in(1:end-4) '.txt'],'file')) + copyfile([file_in(1:end-4) '.txt'],[output(1:end-4) '.txt']); + end + + NiftiIO_basic.WriteJSONDescription('output',output(1:end-4),'props',json); + end + + function SortNiiWRTbval(varargin) + % Sort a .nii according to the diffusion weighting in ascending + % order. Input arguments: + % nii_file: the .nii file to sort + % output: the output .nii file + % txt_file: the b-matrix file (optional). If not specified, the + % function will look for a .txt or .bval/.bvec with the same name + % of the .nii + if(isempty(varargin)) + my_help('MRTQuant.SortNiiWRTbval'); + return; + end + + json.CallFunction = 'MRTQuant.SortNiiWRTbval'; + json.Description = my_help('MRTQuant.SortNiiWRTbval'); + + coptions = varargin; + file_in = GiveValueForName(coptions,'nii_file'); + if(isempty(file_in)) + error('Missing mandatory argument nii_file'); + end + json.ReferenceFile = file_in; + json.ProcessingType = 'Preprocessing'; + + bmat_file = GiveValueForName(coptions,'txt_file'); + if(isempty(bmat_file)) + bmat_file = [file_in(1:end-4) '.txt']; + end + output = GiveValueForName(coptions,'output'); + if(isempty(output)) + output = [file_in(1:end-4) '_sorted.nii']; + end + + data = MRTQuant.LoadNifti(file_in); + use_bmat = 0; + if(exist(bmat_file,'file')) + use_bmat = 1; + end + + if(use_bmat == 1) + bmat = load(bmat_file); + bvals = sum(bmat(:,[1 4 6]),2); + [~,IX] = sort(bvals,'ascend'); + bmat = bmat(IX,:); + save([output(1:end-4) '.txt'],'bmat','-ascii'); + else + bvals = load([file_in(1:end-4) '.bval']); + bvecs = load([file_in(1:end-4) '.bvec']); + [bvals,IX] = sort(bvals,'ascend'); + bvecs = bvecs(:,IX); + save([output(1:end-4) '.bval'],'bvals','-ascii'); + save([output(1:end-4) '.bvec'],'bvecs','-ascii'); + end + + data.img = data.img(:,:,:,IX); + MRTQuant.WriteNifti(data,output); + + NiftiIO_basic.WriteJSONDescription('output',output(1:end-4),'props',json); + end + + function DiscardEmptyVolumes(varargin) + % Checks a 4D .nii for empty volumes and discards them + % arguments: + % nii_file: the (d)MRI .nii file + % bmat: the corresponding b-matrix in .txt + % output: the output .nii file + + if(isempty(varargin)) + my_help('MRTQuant.DiscardEmptyVolumes'); + return; + end + + json.CallFunction = 'MRTQuant.DiscardEmptyVolumes'; + json.Description = my_help('MRTQuant.DiscardEmptyVolumes'); + + coptions = varargin; + nii_file = GiveValueForName(coptions,'nii_file'); + if(isempty(nii_file)) + error('Missing mandatory argument nii_file'); + end + json.ReferenceFile = nii_file; + json.ProcessingType = 'Preprocessing'; + + bmat = GiveValueForName(coptions,'bmat'); + if(~isempty(bmat)) + bmat = load(bmat); + end + output = GiveValueForName(coptions,'output'); + if(isempty(output)) + error('Missing mandatory argument output'); + end + + data = MRTQuant.LoadNifti(nii_file); + [sx,sy,sz,st] = size(data.img); + data.img = reshape(data.img,sx*sy*sz,st); + V = sum(data.img); + BI = V == 0; + data.img = reshape(data.img,sx,sy,sz,st); + if(sum(BI) ~= 0) + data.img(:,:,:,BI == 1) = []; + if(~isempty(bmat)) + bmat(BI == 1,:) = []; + save([output(1:end-4) '.txt'],'bmat','-ascii'); + end + MRTQuant.WriteNifti(data,output); + end + + NiftiIO_basic.WriteJSONDescription('output',output(1:end-4),'props',json); + end + + function res = AverageNormalizedResiduals(varargin) + % Compute voxel-wise residuals using the DTI/DKI model. Input + % arguments: + % mat_file: the ExploreDTI-like .mat file to compute residuals from + % normalize: 0-1 divide all signals by the correspondent b = 0s/mm2 + % output: if set, save the residuals to the specified .nii file + + % ADD JSON HANDLING + + if(isempty(varargin)) + my_help('MRTQuant.AverageNormalizedResiduals'); + return; + end + + coptions = varargin; + mat_file = GiveValueForName(coptions,'mat_file'); + if(isempty(mat_file)) + error('Missing mandatory argument mat_file'); + end + normalize = GiveValueForName(coptions,'normalize'); + if(isempty(normalize)) + normalize = 1; + end + load(mat_file,'DWI','DWIB0','DT','b','VDims','KT'); + DWI = single(EDTI_Library.E_DTI_DWI_cell2mat(DWI)); + if(normalize == 1) + for iz=1:size(DWI,4) + sl = DWI(:,:,:,iz)./(DWIB0+eps); + sl(DWIB0 == 0) = 0; + DWI(:,:,:,iz) = sl; + end + end + DT = EDTI_Library.E_DTI_DWI_cell2mat(DT); + siz = size(DT); + if(exist('KT','var') < 1 || isempty(KT)) + DT = reshape(DT,siz(1)*siz(2)*siz(3),size(DT,4)); + pred = exp(DT*(-b')); + end + pred = reshape(pred,[siz(1:3) size(b,1)]); + if(normalize == 0) + for iz=1:size(pred,4) + pred(:,:,:,iz) = DWIB0.*pred(:,:,:,iz); + end + end + res = mean(abs(DWI-pred),4); + + output = GiveValueForName(coptions,'output'); + if(~isempty(output)) + EDTI_Library.E_DTI_write_nifti_file(res,VDims,output); + end + + end + + function temp_mat_location = QuickNiiBvalBvecToMat(varargin) + % Create a .MAT from .nii and .bval/.bvec for internal processing + % in a temporary directory. Input arguments: + % nii_file: the target .nii file + % bval_file: the compation .bval fie + % bvec_file: the companion .bvec file + % grad_perm: optional, how to permute the diffusion gradients + % grad_flip: optional, how to flip the sign of the gradients + coptions = varargin; + file_in = GiveValueForName(coptions,'nii_file'); + if(isempty(file_in)) + error('Need to specify the target file'); + end + + bval_file = GiveValueForName(coptions,'bval_file'); + if(isempty(bval_file)) + bval_file = [file_in(1:end-4) '.bval']; + end + + bvec_file = GiveValueForName(coptions,'bvec_file'); + if(isempty(bvec_file)) + bvec_file = [file_in(1:end-4) '.bvec']; + end + + option_value = GiveValueForName(coptions,'grad_perm'); + if(~isempty(option_value)) + perm = option_value; + else + perm = []; + end + option_value = GiveValueForName(coptions,'grad_flip'); + if(~isempty(option_value)) + flip = option_value; + else + flip = []; + end + + while(true) + dest_basename = fullfile(tempdir,['mrtd_' num2str(randi(500000))]); + if(isempty(dir([dest_basename '*']))) + break + end + end + + MRTQuant.b_Matrix_from_bval_bvec('bval_file',bval_file,'bvec_file',bvec_file,... + 'output',[dest_basename '.txt']); + + if(~isempty(perm) && ~isempty(flip)) + MRTQuant.PerformDTI_DKIFit('nii_file',file_in,'txt_file',[dest_basename '.txt'],... + 'output',[dest_basename '.mat'],'grad_perm',perm,'grad_flip',flip); + else + MRTQuant.PerformDTI_DKIFit('nii_file',file_in,'txt_file',[dest_basename '.txt'],... + 'output',[dest_basename '.mat']); + end + + temp_mat_location = [dest_basename '.mat']; + + end + + function [DataRecon, noise_map, ncomponents] = PerformMPPCADenoising(varargin) + % Based on MRTRIX3 implementation of J. Veraart work on MP-PCA denoising + % (PMID 27523449) + % Expects data_name without extension (adds .nii) + % Extended with Martijn's (Froeling) suggestion to weight multiple windows + % Input arguments: + % nii_file: the target .nii file + % output: the output name prefix. Will add _denoised.nii + + coptions = varargin; + data_name = GiveValueForName(coptions,'nii_file'); + if(isempty(data_name)) + error('Need to specify the target file (nii_file)'); + end + save_prefix = GiveValueForName(coptions,'output'); + if(isempty(save_prefix)) + error('Need to specify the output prefix'); + end + weight_pca = 0; + + tic + vol = MRTQuant.LoadNifti(data_name); + % vol.img = single(vol.img)*vol.hdr.dime.scl_slope; + + default_extent = 5; % size of the moving window. 5 is the default for the authors + if(nargin < 3) + weight_pca = 0; + end + + ms2 = (default_extent-1)/2; + ms12 = ms2+1; + [sx,sy,sz,st] = size(vol.img); + % Zero padding + ovol = vol.img; + vol.img = zeros(sx+2*ms2,sy+2*ms2,sz+2*ms2,st); + vol.img(ms2+1:end-ms2,ms2+1:end-ms2,ms2+1:end-ms2,:) = ovol; + clear ovol; + + pool = gcp; + data_blocks = floor(size(vol.img,3)/pool.NumWorkers); + + data_in_blocks = cell(pool.NumWorkers,1); + components_blocks = cell(pool.NumWorkers,1); + sigma_blocks = cell(pool.NumWorkers,1); + datarecon_blocks = cell(pool.NumWorkers,1); + global_indices = cell(pool.NumWorkers,1); + + for ikx=1:pool.NumWorkers + indices = max(1,(ikx-1)*data_blocks-ms12):min(size(vol.img,3),ikx*data_blocks+ms12); + data_in_blocks(ikx) = {vol.img(:,:,indices,:)}; + global_indices(ikx) = {indices}; + end + if(ikx*data_blocks < sz) + % Make sure to include the whole volume + indices = indices(end)+1:sz; + data_in_blocks(end) = {cat(3,data_in_blocks{end},vol.img(:,:,indices,:))}; + global_indices(end) = {cat(2,global_indices{end},indices)}; + end + + parfor block=1:pool.NumWorkers + + [sx,sy,sz,m] = size(data_in_blocks{block}); + n = default_extent*default_extent*default_extent; + msk = find(data_in_blocks{block}(:,:,:,1)); + + sigmas = NaN(length(msk),1); + ncomponents = NaN(length(msk),1); + DataRecon = zeros(sx,sy,sz,m); + Visits = zeros(sx,sy,sz); + Sigma = zeros(sx,sy,sz); + Weight = zeros(sx,sy,sz); + + % Compute a value of sigma for each voxel + for i=1:length(msk) + [ix,iy,iz] = points3dfromlind([sx sy sz],msk(i)); + if(ix-ms2 < 1 || iy-ms2 < 1 || iz-ms2 < 1) + continue + end + if(ix+ms2 > sx || iy+ms2 > sy || iz+ms2 > sz) + continue + end + xrange = ix-ms2:ix+ms2; + yrange = iy-ms2:iy+ms2; + zrange = iz-ms2:iz+ms2; + + local_data = double(reshape(data_in_blocks{block}(xrange,yrange,zrange,:),n,m)); + mean_data = mean(local_data(:)); + local_data = local_data - mean_data; % FIX + + [sigmas(i), ncomponents(i), U, S, V] = estimate_pca_demeaned_signal(local_data,m,n); + + reconstructed_signal = reconstruct_truncated_pca_signal(U,S,V,sigmas(i),m,n); + if(reconstructed_signal == -1) + reconstructed_signal = local_data; + end + rebuilt_data = reshape(reconstructed_signal,default_extent,default_extent,default_extent,m); + rebuilt_data = rebuilt_data + mean_data; + + for xi=1:length(xrange) + for yi=1:length(yrange) + for zi=1:length(zrange) + Visits(xrange(xi),yrange(yi),zrange(zi)) = Visits(xrange(xi),yrange(yi),zrange(zi)) + 1; + if(weight_pca == 0) + Weight(xrange(xi),yrange(yi),zrange(zi)) = Weight(xrange(xi),yrange(yi),zrange(zi)) + 1; + DataRecon(xrange(xi),yrange(yi),zrange(zi),:) = DataRecon(xrange(xi),yrange(yi),zrange(zi),:) + rebuilt_data(xi,yi,zi,:); + Sigma(xrange(xi),yrange(yi),zrange(zi)) = Sigma(xrange(xi),yrange(yi),zrange(zi)) + sigmas(i); + else + Weight(xrange(xi),yrange(yi),zrange(zi)) = Weight(xrange(xi),yrange(yi),zrange(zi)) + ncomponents(i)/r; + DataRecon(xrange(xi),yrange(yi),zrange(zi),:) = DataRecon(xrange(xi),yrange(yi),zrange(zi),:) + ncomponents(i)/r*rebuilt_data(xi,yi,zi,:); + Sigma(xrange(xi),yrange(yi),zrange(zi)) = Sigma(xrange(xi),yrange(yi),zrange(zi)) + ncomponents(i)/r*sigmas(i); + end + end + end + end + end + + for x=1:sx + for y=1:sy + for z=1:sz + if(Visits(x,y,z) == 0) + continue + end + DataRecon(x,y,z,:) = DataRecon(x,y,z,:) / Weight(x,y,z); + Sigma(x,y,z) = Sigma(x,y,z) / Weight(x,y,z); + end + end + end + % noise_map = zeros(size(vol.img(:,:,:,1))); +% noise_map = Sigma; + + components = zeros(size(data_in_blocks{block}(:,:,:,1))); + components(msk) = ncomponents; + components_blocks(block) = {components}; + sigma_blocks(block) = {Sigma}; + datarecon_blocks(block) = {DataRecon}; + end + + t = toc; + + eb1 = find(global_indices{1} == global_indices{2}(ms12+1)); + components_blocks(1) = {components_blocks{1}(:,:,1:eb1-1)}; + sigma_blocks(1) = {sigma_blocks{1}(:,:,1:eb1-1)}; + datarecon_blocks(1) = {datarecon_blocks{1}(:,:,1:eb1-1,:)}; + global_indices(1) = {global_indices{1}(1:eb1-1)}; + for ixx=2:pool.NumWorkers-1 + components_blocks(1) = {cat(3,components_blocks{1},components_blocks{ixx}(:,:,ms12+1:end-ms12-1))}; + sigma_blocks(1) = {cat(3,sigma_blocks{1},sigma_blocks{ixx}(:,:,ms12+1:end-ms12-1))}; + datarecon_blocks(1) = {cat(3,datarecon_blocks{1},datarecon_blocks{ixx}(:,:,ms12+1:end-ms12-1,:))}; + global_indices(1) = {cat(2,global_indices{1},global_indices{ixx}(ms12+1:end-ms12-1))}; + end + components_blocks(1) = {cat(3,components_blocks{1},components_blocks{end}(:,:,ms12+1:end))}; + sigma_blocks(1) = {cat(3,sigma_blocks{1},sigma_blocks{end}(:,:,ms12+1:end))}; + datarecon_blocks(1) = {cat(3,datarecon_blocks{1},datarecon_blocks{end}(:,:,ms12+1:end,:))}; + global_indices(1) = {cat(2,global_indices{1},global_indices{end}(ms12+1:end))}; + errors = sum(diff(global_indices{1}) ~= 1) > 0; + if(errors > 0) + error('Denoising: slice indices are not correct'); + end + + DataRecon = datarecon_blocks{1}; + noise_map = sigma_blocks{1}; + ncomponents = components_blocks{1}; + + if(nargin > 1) + OUT.VD = vol.VD; + OUT.img = DataRecon(ms2+1:end-ms2,ms2+1:end-ms2,ms2+1:end-ms2,:); + MRTQuant.WriteNifti(OUT,[save_prefix '_denoised.nii']); + OUT.img = noise_map(ms2+1:end-ms2,ms2+1:end-ms2,ms2+1:end-ms2); + MRTQuant.WriteNifti(OUT,[save_prefix '_noisemap.nii']); + % E_DTI_write_nifti_file(components,VD,[save_prefix '_ncomponents.nii']); + end + + disp(['Elapsed time ' num2str(t)]); + + end + + function [DataRecon, noise_map, ncomponents] = PerformMPPCADenoising_orig(varargin) + % Based on MRTRIX3 implementation of J. Veraart work on MP-PCA denoising + % (PMID 27523449) + % Expects data_name without extension (adds .nii) + % Extended with Martijn's (Froeling) suggestion to weight multiple windows + % Input arguments: + % nii_file: the target .nii file + % output: the output name prefix. Will add _denoised.nii + + coptions = varargin; + data_name = GiveValueForName(coptions,'nii_file'); + if(isempty(data_name)) + error('Need to specify the target file (nii_file)'); + end + save_prefix = GiveValueForName(coptions,'output'); + if(isempty(save_prefix)) + error('Need to specify the output prefix'); + end + weight_pca = 0; + + tic + vol = MRTQuant.LoadNifti(data_name); + % vol.img = single(vol.img)*vol.hdr.dime.scl_slope; + + default_extent = 5; % size of the moving window. 5 is the default for the authors + if(nargin < 3) + weight_pca = 0; + end + + ms2 = (default_extent-1)/2; + [sx,sy,sz,m] = size(vol.img); + n = default_extent*default_extent*default_extent; + msk = find(vol.img(:,:,:,1)); + + sigmas = NaN(length(msk),1); + ncomponents = NaN(length(msk),1); + DataRecon = zeros(sx,sy,sz,m); + Visits = zeros(sx,sy,sz); + Sigma = zeros(sx,sy,sz); + Weight = zeros(sx,sy,sz); + + % Compute a value of sigma for each voxel + for i=1:length(msk) + [x,y,z] = points3dfromlind([sx sy sz],msk(i)); + if(x-ms2 < 1 || y-ms2 < 1 || z-ms2 < 1) + continue + end + if(x+ms2 > sx || y+ms2 > sy || z+ms2 > sz) + continue + end + xrange = x-ms2:x+ms2; + yrange = y-ms2:y+ms2; + zrange = z-ms2:z+ms2; + + local_data = double(reshape(vol.img(xrange,yrange,zrange,:),n,m)); + mean_data = mean(local_data(:)); + local_data = local_data - mean_data; % FIX + + [sigmas(i), ncomponents(i), U, S, V] = estimate_pca_demeaned_signal(local_data,m,n); + + reconstructed_signal = reconstruct_truncated_pca_signal(U,S,V,sigmas(i),m,n); + if(reconstructed_signal == -1) + reconstructed_signal = local_data; + end + rebuilt_data = reshape(reconstructed_signal,default_extent,default_extent,default_extent,m); + rebuilt_data = rebuilt_data + mean_data; + + for xi=1:length(xrange) + for yi=1:length(yrange) + for zi=1:length(zrange) + Visits(xrange(xi),yrange(yi),zrange(zi)) = Visits(xrange(xi),yrange(yi),zrange(zi)) + 1; + if(weight_pca == 0) + Weight(xrange(xi),yrange(yi),zrange(zi)) = Weight(xrange(xi),yrange(yi),zrange(zi)) + 1; + DataRecon(xrange(xi),yrange(yi),zrange(zi),:) = DataRecon(xrange(xi),yrange(yi),zrange(zi),:) + rebuilt_data(xi,yi,zi,:); + Sigma(xrange(xi),yrange(yi),zrange(zi)) = Sigma(xrange(xi),yrange(yi),zrange(zi)) + sigmas(i); + else + Weight(xrange(xi),yrange(yi),zrange(zi)) = Weight(xrange(xi),yrange(yi),zrange(zi)) + ncomponents(i)/r; + DataRecon(xrange(xi),yrange(yi),zrange(zi),:) = DataRecon(xrange(xi),yrange(yi),zrange(zi),:) + ncomponents(i)/r*rebuilt_data(xi,yi,zi,:); + Sigma(xrange(xi),yrange(yi),zrange(zi)) = Sigma(xrange(xi),yrange(yi),zrange(zi)) + ncomponents(i)/r*sigmas(i); + end + end + end + end + end + + for x=1:sx + for y=1:sy + for z=1:sz + if(Visits(x,y,z) == 0) + continue + end + DataRecon(x,y,z,:) = DataRecon(x,y,z,:) / Weight(x,y,z); + Sigma(x,y,z) = Sigma(x,y,z) / Weight(x,y,z); + end + end + end + + % noise_map = zeros(size(vol.img(:,:,:,1))); + noise_map = Sigma; + + components = zeros(size(vol.img(:,:,:,1))); + components(msk) = ncomponents; + + t = toc; + + if(nargin > 1) + OUT.VD = vol.VD; + OUT.img = DataRecon; + MRTQuant.WriteNifti(OUT,[save_prefix '_denoised.nii']); + OUT.img = noise_map; + MRTQuant.WriteNifti(OUT,[save_prefix '_noisemap.nii']); + % E_DTI_write_nifti_file(components,VD,[save_prefix '_ncomponents.nii']); + end + + disp(['Elapsed time ' num2str(t)]); + + end + + function PerformSpectralDeconvolution(varargin) + % Perform the Laplacian - Spectral - Deconvolution method + % published in De Luca et al. 2018 (https://www.ncbi.nlm.nih.gov/pubmed/30052293) + % The input MUST have multiple diffusion weightings (4+). + % Input arguments: + % nii_file: the target .nii file + % bval_file: the corresponding .bval file + % bvec_file: the corresponding .bvec file + % mat_file: a target .mat file, overrides nii_file, bval_file, + % bvec_file + % mask_file: a mask file defining the volume to fit + % min_bval: Minimum b-value to use + % max_bval: Maximum b-value to use + % Lambda: L2 value of the PL2NNLS method (0.05 by default) + % UseLP: Use the "low_res" prior in PL2NNLS 0 or 1 (default 1) + % ExtraSens: Tries to increase sensitivity (requires high SNR + % data) 1 or 0 (default 0) + % OutliersSD: Threshold for outlier rejection (default 3) + % output: the output prefix name (suffixes and .nii will be + % added automatically) + if(isempty(varargin)) + my_help('MRTQuant.PerformSpectralDeconvolution'); + return + end + coptions = varargin; + + mat_file = GiveValueForName(coptions,'mat_file'); + if(isempty(mat_file)) + data_name = GiveValueForName(coptions,'nii_file'); + if(isempty(data_name)) + error('Need to specify the target file (nii_file)'); + end + parameters.data_name = data_name; + + bvec_name = GiveValueForName(coptions,'bvec_file'); + if(isempty(bvec_name)) + error('Need to specify the bvec file (bvec_file)'); + end + parameters.bvec_name = bvec_name; + + bval_name = GiveValueForName(coptions,'bval_file'); + if(isempty(bval_name)) + error('Need to specify the bval file (bval_file)'); + end + parameters.bval_name = bval_name; + + mask_name = GiveValueForName(coptions,'mask_file'); + if(isempty(mask_name)) + error('Need to specify the mask file (mask_file)'); + end + parameters.mask_name = mask_name; + else + parameters.data_name = mat_file; + end + + output_prefix = GiveValueForName(coptions,'output'); + if(isempty(output_prefix)) + error('Need to specify the output prefix (output)'); + end + parameters.output_prefix = output_prefix; + + parameters.min_bval = GiveValueForName(coptions,'min_bval'); + if(isempty(parameters.min_bval)) + error('Need to specify the minimum b-value (min_bval)'); + end + parameters.min_bval = parameters.min_bval; + + parameters.max_bval = GiveValueForName(coptions,'max_bval'); + if(isempty(parameters.max_bval)) + error('Need to specify the maximum b-value (max_bval)'); + end + parameters.max_bval = parameters.max_bval; + + LambdaGrid = GiveValueForName(coptions,'Lambda'); + if(isempty(LambdaGrid)) + LambdaGrid = 0.05; + end + parameters.LambdaGrid = LambdaGrid; + + OutliersSD = GiveValueForName(coptions,'OutliersSD'); + if(isempty(OutliersSD)) + OutliersSD = 3; + end + parameters.outliers_sigma = OutliersSD; + + ExtraSens = GiveValueForName(coptions,'ExtraSens'); + if(isempty(ExtraSens)) + ExtraSens = 0; + end + parameters.ExtraSens = ExtraSens; + + UseLP = GiveValueForName(coptions,'UseLP'); + if(isempty(UseLP)) + UseLP = 1; + end + parameters.use_low_prior = UseLP; + + GMMBatch_NMRBiomed_fitscript_clean(parameters) + + end + + function PerformSegmentedIVIMFit2comp(varargin) + % Perform an IVIM "segmented" fit with 2 compartments (tissue + blood). + % The input MUST have multiple diffusion weightings (2+) including low b-values (b<=200s/mm2). + % Input arguments: + % nii_file: the target .nii file + % bval_file: the corresponding .bval file + % bvec_file: the corresponding .bvec file + % txt_file: the target .txt file (overrides + % bval_file,bvec_file) + % mat_file: the target .mat file (overrides nii_file, + % bval_file, bvec_file) + % mask_file: a mask file defining the volume to fit + % min_bval: Minimum b-value to use + % max_bval: Maximum b-value to use + % fit_dt: (default 0), whether to fit a tensor for the tissue + % b_thresh: The b-value after which IVIM is "negligible" + % (typically b=200s/mm2) + % output: the output prefix name (suffixes and .nii will be + % added automatically) + % do_geoavg: 0-1, whether to perform geometric averaging + % (default 1) + + coptions = varargin; + + mat_name = GiveValueForName(coptions,'mat_file'); + + if(isempty(mat_name)) + data_name = GiveValueForName(coptions,'nii_file'); + if(isempty(data_name)) + error('Need to specify the target file (nii_file)'); + end + data = MRTQuant.LoadNifti(data_name); + + txt_name = GiveValueForName(coptions,'txt_file'); + + if(isempty(txt_name)) + bvec_name = GiveValueForName(coptions,'bvec_file'); + if(isempty(bvec_name)) + error('Need to specify the bvec file (bvec_file)'); + end + + bval_name = GiveValueForName(coptions,'bval_file'); + if(isempty(bval_name)) + error('Need to specify the bval file (bval_file)'); + end + data.bvals = load(bval_name)'; + data.bvecs = load(bvec_name)'; + else + gmat = load(txt_name); + [data.bvals,data.bvecs] = MRTQuant.bval_bvec_from_b_Matrix(gmat); + end + else + data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',mat_name,'no_preproc',1); + end + + mask_name = GiveValueForName(coptions,'mask_file'); + if(isempty(mask_name) && isempty(mat_name)) + error('Need to specify the mask file (mask_file)'); + end + + fit_dt = GiveValueForName(coptions,'fit_dt'); + if(isempty(fit_dt)) + fit_dt = 0; + end + + do_geoavg = GiveValueForName(coptions,'do_geoavg'); + if(isempty(do_geoavg)) + do_geoavg = 1; + end + + output_prefix = GiveValueForName(coptions,'output'); + if(isempty(output_prefix)) + error('Need to specify the output prefix (output)'); + end + + parameters.min_bval = GiveValueForName(coptions,'min_bval'); + if(isempty(parameters.min_bval)) + error('Need to specify the minimum b-value (min_bval)'); + end + + parameters.max_bval = GiveValueForName(coptions,'max_bval'); + if(isempty(parameters.max_bval)) + error('Need to specify the maximum b-value (max_bval)'); + end + + parameters.bthresh = GiveValueForName(coptions,'b_thresh'); + if(isempty(parameters.bthresh)) + disp('Using the default threshold b-value (bthresh)'); + parameters.bthresh = 200; + end + + if(~isfield(data,'mask')) + mask = MRTQuant.LoadNifti(mask_name); + data.mask = mask.img; + end + + if(do_geoavg == 1) + data = QuickGeoAverage(data); + end + + if(fit_dt == 0) + [Dhigh,Dlow,f] = SegmentedIVIMFit2Comp(data,parameters); + MRTQuant.WriteNifti(Dhigh,[output_prefix '_Dhigh.nii']); + else + [DT,Dlow,f] = SegmentedIVIMFit2Comp_DT(data,parameters); + [~, FA, ~, ~, eigval] = EDTI_Library.E_DTI_eigensystem_analytic(EDTI_Library.E_DTI_DWI_mat2cell(DT.img)); + out_nii = f; + out_nii.img = FA; + MRTQuant.WriteNifti(out_nii,[output_prefix '_FA.nii']); + out_nii.img = mean(eigval,4); + MRTQuant.WriteNifti(out_nii,[output_prefix '_MD.nii']); + end + MRTQuant.WriteNifti(f,[output_prefix '_fivim.nii']); + MRTQuant.WriteNifti(Dlow,[output_prefix '_Dstar.nii']); + end + + function PerformFW_Fit(varargin) + % Perform a FW + ADC fit (ISO) with 2 compartments (tissue + free water). + % This is a non-linear fit (slow) + % The input MUST have multiple diffusion weightings (2+) including low b-values (b<=1000s/mm2). + % Input arguments: + % nii_file: the target .nii file + % bval_file: the corresponding .bval file + % bvec_file: the corresponding .bvec file + % txt_file: the target .txt file (overrides + % bval_file,bvec_file) + % mat_file: the target .mat file (overrides nii_file, + % bval_file, bvec_file) + % mask_file: a mask file defining the volume to fit + % min_bval: Minimum b-value to use + % max_bval: Maximum b-value to use + % output: the output prefix name (suffixes and .nii will be + % added automatically) + % correct_data: 0 or 1. Whether to remove the FW signal from the data + % (which can be later fit with DTI to get FW-corrected FA/MD) + % do_geoavg: 0-1, whether to perform geometric averaging + % (default 1) + + coptions = varargin; + + mat_name = GiveValueForName(coptions,'mat_file'); + + if(isempty(mat_name)) + data_name = GiveValueForName(coptions,'nii_file'); + if(isempty(data_name)) + error('Need to specify the target file (nii_file)'); + end + data = MRTQuant.LoadNifti(data_name); + + mask_name = GiveValueForName(coptions,'mask_file'); + if(isempty(mask_name)) + error('Need to specify the mask file (mask_file)'); + end + mask = MRTQuant.LoadNifti(mask_name); + data.mask = mask.img; + + txt_name = GiveValueForName(coptions,'txt_file'); + + if(isempty(txt_name)) + bvec_name = GiveValueForName(coptions,'bvec_file'); + if(isempty(bvec_name)) + error('Need to specify the bvec file (bvec_file)'); + end + + bval_name = GiveValueForName(coptions,'bval_file'); + if(isempty(bval_name)) + error('Need to specify the bval file (bval_file)'); + end + data.bvals = load(bval_name)'; + data.bvecs = load(bvec_name)'; + else + gmat = load(txt_name); + [data.bvals,data.bvecs] = MRTQuant.bval_bvec_from_b_Matrix(gmat); + end + else + data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',mat_name,'no_preproc',1); + FA = load(mat_name,'FA'); + data.mask = ~isnan(FA.FA); + end + + output_prefix = GiveValueForName(coptions,'output'); + if(isempty(output_prefix)) + error('Need to specify the output prefix (output)'); + end + + parameters.min_bval = GiveValueForName(coptions,'min_bval'); + if(isempty(parameters.min_bval)) + error('Need to specify the minimum b-value (min_bval)'); + end + + parameters.max_bval = GiveValueForName(coptions,'max_bval'); + if(isempty(parameters.max_bval)) + error('Need to specify the maximum b-value (max_bval)'); + end + + correct_data = GiveValueForName(coptions,'correct_data'); + if(isempty(correct_data)) + correct_data = 0; + end + + do_geoavg = GiveValueForName(coptions,'do_geoavg'); + if(isempty(do_geoavg)) + do_geoavg = 1; + end + + if(do_geoavg == 1) + data = QuickGeoAverage(data); + end + + [Dhigh,f,S0] = FWFit2Comp(data,parameters); + + MRTQuant.WriteNifti(f,[output_prefix '_ffw.nii']); + MRTQuant.WriteNifti(Dhigh,[output_prefix '_Dhigh.nii']); + + if(correct_data == 1) + for ij=1:size(data.img,4) + data.img(:,:,:,ij) = max(data.img(:,:,:,ij) - S0.img.*f.img.*exp(-3e-3*data.bvals(ij)),0); + end + MRTQuant.WriteNifti(data,[output_prefix '_FWcorrected.nii']); + bmat = MRTQuant.b_Matrix_from_bval_bvec('bval',data.bvals,'bvec',data.bvecs); + save([output_prefix '_FWcorrected.txt'],'bmat','-ascii'); + end + + end + + function PerformTensorFW_Fit(varargin) + % Perform a FW + Tensor fit with 2 compartments (tissue + free water). + % This is a non-linear fit (slow) + % The input MUST have multiple diffusion weightings (2+) including low b-values (b<=1000s/mm2). + % Input arguments: + % nii_file: the target .nii file + % bval_file: the corresponding .bval file + % bvec_file: the corresponding .bvec file + % txt_file: the target .txt file (overrides + % bval_file,bvec_file) + % mat_file: the target .mat file (overrides nii_file, + % bval_file, bvec_file) + % mask_file: a mask file defining the volume to fit + % min_bval: Minimum b-value to use + % max_bval: Maximum b-value to use + % output: the output prefix name (suffixes and .nii will be + % added automatically) + % correct_data: 0 or 1. Whether to remove the FW signal from the data + % (which can be later fit with DTI to get FW-corrected FA/MD) + + coptions = varargin; + + mat_name = GiveValueForName(coptions,'mat_file'); + + if(isempty(mat_name)) + data_name = GiveValueForName(coptions,'nii_file'); + if(isempty(data_name)) + error('Need to specify the target file (nii_file)'); + end + data = MRTQuant.LoadNifti(data_name); + + mask_name = GiveValueForName(coptions,'mask_file'); + if(isempty(mask_name)) + error('Need to specify the mask file (mask_file)'); + end + mask = MRTQuant.LoadNifti(mask_name); + data.mask = mask.img; + + txt_name = GiveValueForName(coptions,'txt_file'); + + if(isempty(txt_name)) + bvec_name = GiveValueForName(coptions,'bvec_file'); + if(isempty(bvec_name)) + error('Need to specify the bvec file (bvec_file)'); + end + + bval_name = GiveValueForName(coptions,'bval_file'); + if(isempty(bval_name)) + error('Need to specify the bval file (bval_file)'); + end + data.bvals = load(bval_name)'; + data.bvecs = load(bvec_name)'; + else + gmat = load(txt_name); + [data.bvals,data.bvecs] = MRTQuant.bval_bvec_from_b_Matrix(gmat); + end + else + data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',mat_name,'no_preproc',1); + FA = load(mat_name,'FA'); + data.mask = ~isnan(FA.FA); + end + + output_prefix = GiveValueForName(coptions,'output'); + if(isempty(output_prefix)) + error('Need to specify the output prefix (output)'); + end + + parameters.min_bval = GiveValueForName(coptions,'min_bval'); + if(isempty(parameters.min_bval)) + error('Need to specify the minimum b-value (min_bval)'); + end + + parameters.max_bval = GiveValueForName(coptions,'max_bval'); + if(isempty(parameters.max_bval)) + error('Need to specify the maximum b-value (max_bval)'); + end + + correct_data = GiveValueForName(coptions,'correct_data'); + if(isempty(correct_data)) + correct_data = 0; + end + + [Dt,f,S0] = TensorFWFit2Comp(data,parameters); + [~, FA, ~, ~, eigval] = EDTI_Library.E_DTI_eigensystem_analytic(EDTI_Library.E_DTI_DWI_mat2cell(Dt.img)); + + MRTQuant.WriteNifti(f,[output_prefix '_ffw.nii']); + MRTQuant.WriteNifti(Dt,[output_prefix '_Dt.nii']); + Dt.img = FA; + MRTQuant.WriteNifti(Dt,[output_prefix '_FA.nii']); + Dt.img = mean(eigval,4); + MRTQuant.WriteNifti(Dt,[output_prefix '_MD.nii']); + + if(correct_data == 1) + for ij=1:size(data.img,4) + data.img(:,:,:,ij) = max(data.img(:,:,:,ij) - S0.img.*f.img.*exp(-3e-3*data.bvals(ij)),0); + end + MRTQuant.WriteNifti(data,[output_prefix '_FWcorrected.nii']); + bmat = MRTQuant.b_Matrix_from_bval_bvec('bval',data.bvals,'bvec',data.bvecs); + save([output_prefix '_FWcorrected.txt'],'bmat','-ascii'); + end + + end + + function PerformIVIM_Fit(varargin) + % Perform an IVIM + ADC non-linear fit. + % The input MUST have multiple diffusion weightings (2+) including low b-values (b<=200s/mm2) + % Input arguments: + % nii_file: the target .nii file + % bval_file: the corresponding .bval file + % bvec_file: the corresponding .bvec file + % txt_file: the target .txt file (overrides + % bval_file,bvec_file) + % mat_file: the target .mat file (overrides nii_file, + % bval_file, bvec_file) + % mask_file: a mask file defining the volume to fit + % min_bval: Minimum b-value to use + % max_bval: Maximum b-value to use + % output: the output prefix name (suffixes and .nii will be + % added automatically) + % do_geoavg: 0-1, whether to perform geometric averaging + % (default 1) + + coptions = varargin; + + mat_name = GiveValueForName(coptions,'mat_file'); + + if(isempty(mat_name)) + data_name = GiveValueForName(coptions,'nii_file'); + if(isempty(data_name)) + error('Need to specify the target file (nii_file)'); + end + data = MRTQuant.LoadNifti(data_name); + + txt_name = GiveValueForName(coptions,'txt_file'); + + if(isempty(txt_name)) + bvec_name = GiveValueForName(coptions,'bvec_file'); + if(isempty(bvec_name)) + error('Need to specify the bvec file (bvec_file)'); + end + + bval_name = GiveValueForName(coptions,'bval_file'); + if(isempty(bval_name)) + error('Need to specify the bval file (bval_file)'); + end + data.bvals = load(bval_name)'; + data.bvecs = load(bvec_name)'; + else + gmat = load(txt_name); + [data.bvals,data.bvecs] = MRTQuant.bval_bvec_from_b_Matrix(gmat); + end + else + data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',mat_name,'no_preproc',1); + end + + mask_name = GiveValueForName(coptions,'mask_file'); + if(isempty(mask_name)) + if(isempty(mat_name)) + error('Need to specify the mask file (mask_file)'); + end + end + + output_prefix = GiveValueForName(coptions,'output'); + if(isempty(output_prefix)) + error('Need to specify the output prefix (output)'); + end + + parameters.min_bval = GiveValueForName(coptions,'min_bval'); + if(isempty(parameters.min_bval)) + error('Need to specify the minimum b-value (min_bval)'); + end + + parameters.max_bval = GiveValueForName(coptions,'max_bval'); + if(isempty(parameters.max_bval)) + error('Need to specify the maximum b-value (max_bval)'); + end + + do_geoavg = GiveValueForName(coptions,'do_geoavg'); + if(isempty(do_geoavg)) + do_geoavg = 1; + end + + if(~isempty(mask_name)) + mask = MRTQuant.LoadNifti(mask_name); + data.mask = mask.img; + end + + if(do_geoavg == 1) + data = QuickGeoAverage(data); + end + + [Dhigh,fivim,DStar] = IVIMFit2Comp(data,parameters); + + MRTQuant.WriteNifti(fivim,[output_prefix '_fivim.nii']); + MRTQuant.WriteNifti(DStar,[output_prefix '_Dstar.nii']); + MRTQuant.WriteNifti(Dhigh,[output_prefix '_Dhigh.nii']); + end + + function PerformIVIM_FW_Fit(varargin) + % Perform an IVIM + FW + ADC non-linear fit. + % The input MUST have multiple diffusion weightings (2+) including low b-values (b<=200s/mm2) + % as well as intermediate b-values (200 < b < 1000s/mm2). + % Input arguments: + % nii_file: the target .nii file + % bval_file: the corresponding .bval file + % bvec_file: the corresponding .bvec file + % txt_file: the target .txt file (overrides + % bval_file,bvec_file) + % mat_file: the target .mat file (overrides nii_file, + % bval_file, bvec_file) + % mask_file: a mask file defining the volume to fit + % min_bval: Minimum b-value to use + % max_bval: Maximum b-value to use + % output: the output prefix name (suffixes and .nii will be + % added automatically) + % do_geoavg: 0-1, whether to perform geometric averaging + % (default 1) + + coptions = varargin; + + mat_name = GiveValueForName(coptions,'mat_file'); + + if(isempty(mat_name)) + data_name = GiveValueForName(coptions,'nii_file'); + if(isempty(data_name)) + error('Need to specify the target file (nii_file)'); + end + data = MRTQuant.LoadNifti(data_name); + + txt_name = GiveValueForName(coptions,'txt_file'); + + if(isempty(txt_name)) + bvec_name = GiveValueForName(coptions,'bvec_file'); + if(isempty(bvec_name)) + error('Need to specify the bvec file (bvec_file)'); + end + + bval_name = GiveValueForName(coptions,'bval_file'); + if(isempty(bval_name)) + error('Need to specify the bval file (bval_file)'); + end + data.bvals = load(bval_name)'; + data.bvecs = load(bvec_name)'; + else + gmat = load(txt_name); + [data.bvals,data.bvecs] = MRTQuant.bval_bvec_from_b_Matrix(gmat); + end + else + data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',mat_name,'no_preproc',1); + end + + mask_name = GiveValueForName(coptions,'mask_file'); + if(isempty(mask_name) && isempty(mat_name)) + error('Need to specify the mask file (mask_file)'); + elseif(~isempty(mask_name)) + mask = MRTQuant.LoadNifti(mask_name); + data.mask = mask.img; + elseif(~isempty(mat_name)) + mask = load(mat_name,'FA'); + data.mask = single(~isnan(mask.FA)); + end + + output_prefix = GiveValueForName(coptions,'output'); + if(isempty(output_prefix)) + error('Need to specify the output prefix (output)'); + end + + parameters.min_bval = GiveValueForName(coptions,'min_bval'); + if(isempty(parameters.min_bval)) + error('Need to specify the minimum b-value (min_bval)'); + end + + parameters.max_bval = GiveValueForName(coptions,'max_bval'); + if(isempty(parameters.max_bval)) + error('Need to specify the maximum b-value (max_bval)'); + end + + do_geoavg = GiveValueForName(coptions,'do_geoavg'); + if(isempty(do_geoavg)) + do_geoavg = 1; + end + + if(do_geoavg == 1) + data = QuickGeoAverage(data); + end + + [Dhigh,Dlow,ffw,fivim] = IVIMFWFit3Comp(data,parameters); + + MRTQuant.WriteNifti(ffw,[output_prefix '_ffw.nii']); + MRTQuant.WriteNifti(fivim,[output_prefix '_fivim.nii']); + MRTQuant.WriteNifti(Dlow,[output_prefix '_Dstar.nii']); + MRTQuant.WriteNifti(Dhigh,[output_prefix '_Dhigh.nii']); + end + + function SNR = EstimateSNRWithB0s(varargin) + % Estimate the average SNR based on b = 0s/mm2. + % If multiple b0s are available, their average / std is + % computed. + % If only 1 b = 0s/mm2 is available, this cannot be used. + % Input arguments: + % mat_file: the target .mat file (overrides all other inputs) + % nii_file: the target .nii file + % bval_file: the corresponding .bval file + % bvec_file: the corresponding .bvec file + % txt_file: the target .txt file (overrides bval_file/bvec_file) + % output: the output SNR .nii + coptions = varargin; + disp('Incomplete implementation'); + nii_name = GiveValueForName(coptions,'nii_file'); + mat_name = GiveValueForName(coptions,'mat_file'); + if(isempty(nii_name) && isempty(mat_name)) + error('Need to specify the input .nii file (nii_file) or .mat file (mat_file)'); + end + + txt_name = GiveValueForName(coptions,'txt_file'); + if(isempty(txt_name) && isempty(mat_name)) + error('Need to specify the input .txt (txt_file)'); + end + + out_file = GiveValueForName(coptions,'output'); + if(isempty(out_file)) + error('Need to specify the output .nii file (output)'); + end + + if(isempty(mat_name)) + bmat = load(txt_name); + data = MRTQuant.LoadNifti(nii_name); + else + DTA = load(mat_name,'DWI','b','VDims'); + bmat = DTA.b; + data.img = single(EDTI_Library.E_DTI_DWI_cell2mat(DTA.DWI)); + data.VD = DTA.VDims; + clear DTA; + end + + b0s = round(sum(bmat(:,[1 4 6]),2)) <= 1; + if(sum(b0s) <= 1) + warning('Not enough b0s in this dataset to estimate SNR'); + SNR = []; + return + end + + SNR.VD = data.VD; + SNR.img = mean(data.img(:,:,:,b0s),4)./(std(data.img(:,:,:,b0s),0,4)+eps); + SNR.img(SNR.img>1e3) = 0; + + MRTQuant.WriteNifti(SNR,out_file); + + end + + function FitSNR = EstimateFitSNR(varargin) + % Determine the fit SNR of the DTI / DKI fit residuals. + % This is determined as b = 0 s/mm2 divided by the standard + % deviation of the fit residuals. + % Input arguments: + % mat_file: the target .mat file + % output (optional): the output .nii file + coptions = varargin; + + mat_name = GiveValueForName(coptions,'mat_file'); + + if(isempty(mat_name)) + error('Need to specify the input .MAT file (mat_file)'); + end + + out_file = GiveValueForName(coptions,'output'); + + % Some parameters default in ExploreDTI + par.clean_up_PIS = 1; + par.ROBUST_option = 1; + par.RE.rel_convergence = 1e-3; + par.RE.max_iter = 20; + par.RE.kappa = 6; + par.DKI_constraints.do_it = 1; + + data = load(mat_name,'DWI','DT','KT','DWIB0','b','g','VDims','FA'); + B0 = single(data.DWIB0); + mask = B0 > 0 & ~isnan(data.FA); + % % Normalize + % for ij=1:length(data.DWI) + % V = single(data.DWI{ij}); + % V(mask) = V(mask) ./ B0(mask); + % data.DWI(ij) = {V}; + % end + % data.DWIB0 = ones(size(B0)); + + if(~isfield(data,'KT') || isempty(data.KT)) + [outlier, ChiSq, chi_sq_iqr, residuals] = EDTI_Library.E_DTI_Get_outlier_chi_sq_var(data.DWI,data.DT,data.DWIB0,data.b,par); + else + [outlier, ChiSq, chi_sq_iqr, residuals] = EDTI_Library.E_DTI_Get_outlier_chi_sq_var_KT(data.DWI,data.DT,data.DWIB0,data.b,par,data.g,data.KT); + end + + % for ij=1:size(residuals,4) + % V = residuals(:,:,:,ij); + % V(mask) = V(mask) ./ B0(mask); + % residuals(:,:,:,ij) = V; + % end + + MR = repmat(mean(residuals,4),1,1,1,size(residuals,4)); + RMS = sqrt(sum((residuals-MR).^2,4)/size(residuals,4)); + FitSNR = data.DWIB0; + FitSNR(mask) = FitSNR(mask) ./ RMS(mask); + + if(~isempty(out_file)) + out.img = FitSNR; + out.VD = data.VDims; + MRTQuant.WriteNifti(out,out_file); + end + + end + + % Cleanup residual content of all temporary folders MRIToolkit + % could have generated (Do not execute while other instances of + % MRIToolkit are running!!!) + function CleanupTemporaryFolders() + tf = tempdir; + identifiers = {'mrtd_','MRT_','FSL_'}; + for id=1:length(identifiers) + dr = dir(fullfile(tf,[identifiers{id} '*'])); + for drid=1:length(dr) + try + rmdir(fullfile(dr(drid).folder,dr(drid).name),'s'); + catch + disp('Some directories could not be deleted. Please retry in a later moment.'); + end + end + end + end + + end +end + +% Helper: finds a parameter by name when using varargin +function value = GiveValueForName(coptions,name) +value = []; +for ij=1:2:length(coptions) + if(strcmpi(coptions{ij},name)) + value = coptions{ij+1}; + return + end +end +end + +% Helper: validate all the input parameters +function value = ValidateInputParameters(coptions,supported_params) +for ij=1:2:length(coptions) + found = -1; + for ik=1:length(supported_params) + if(strcmpi(coptions{ij},supported_params{ik})) + found = ik; + break + end + end + if(found == -1) + error(['Unrecognized input parameter ' coptions{ij}]); + end +end +end + +% Helper function for MP-PCA denoising +function reconstructed_signal = reconstruct_truncated_pca_signal(U,S,V,sigma2,m,n) +eigv = flip(diag(S)).^2; +r = min(n,m); + +sigsq1 = sigma2^2; + +lam_r = eigv(1) / n; +clam = 0; +cutoff_p2 = 0; +for p=1:r + lam = eigv(p) / n; + clam = clam+lam; + gam = (m-r+p)/n; + sigsq2 = (lam-lam_r)/4/sqrt(gam); + if(sigsq2 < sigsq1) + cutoff_p2 = p+1; + end +end +cutoff_p2 = r-cutoff_p2; +eigv = flip(eigv); +if(cutoff_p2 > 1) + Snew = zeros(size(S)); + Sd = diag(sqrt(eigv(1:cutoff_p2))); + Snew(1:cutoff_p2,1:cutoff_p2) = Sd; +else + reconstructed_signal = -1; + return +end + +reconstructed_signal = U*Snew*V'; +end + +% Helper function for MPPCA denoising +function [sigma, ncomponents, U, S, V] = estimate_pca_demeaned_signal(local_data, m, n, force_sigma) +if(nargin < 4) + force_sigma = 0; +end +r = min(n,m); +try + [U,S,V] = svd(local_data,'econ'); +catch + sigma = -1; + ncomponents = -1; + U = 0; + V = 0; + S = 0; + return +end + +eigv = flip((diag(S)).^2); + +lam_r = eigv(1) / n; +clam = 0; +sigma2 = NaN; + +cutoff_p = 0; +for p=1:r + lam = eigv(p) / n; + clam = clam+lam; + gam = (m-r+p)/n; + if(force_sigma < 1) + sigsq1 = clam/(p) / max(gam,1); + else + sigsq1 = sigma2^2; + end + sigsq2 = (lam-lam_r)/4/sqrt(gam); + if(sigsq2 < sigsq1) + sigma2 = sqrt(sigsq1); + cutoff_p = p+1; + end +end +cutoff_p = r-cutoff_p; + +ncomponents = cutoff_p; + +sigma = sigma2; + +end + +% Helper function +function [x,y,z] = points3dfromlind(MS,lin_ind) +% Linear Index For Matrix Of Size MS(3 dimensional) @ Position (x,y,z) +nR = MS(1); +nC = MS(2); +z = fix((lin_ind-1)/((nR)*(nC)))+1; +lin_ind = lin_ind-(z-1)*(nR)*(nC); +y = fix((lin_ind-1)/nR)+1; +x = lin_ind-(y-1)*(nR); +end + +% This code performs the Laplacian - Spectral - Deconvolution method +% published in De Luca et al. 2018 (https://www.ncbi.nlm.nih.gov/pubmed/30052293) +function GMMBatch_NMRBiomed_fitscript_clean(parameters) +% Initial setup - logistics +% just name change of some parameters for convenience + +data_name = parameters.data_name; + +parameters.min_bval = parameters.min_bval; +parameters.max_bval = parameters.max_bval; + +% Load the data + +if(contains(data_name,'.mat')) + data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',data_name); + clean_data = data; +elseif(contains(data_name,'.nii')) + bvec_name = parameters.bvec_name; + bval_name = parameters.bval_name; + + mask_name = parameters.mask_name; + data = DW_LoadData(data_name,bvec_name,bval_name,mask_name,0,'',1); + clean_data = data; +else + error('Unrecognized input file') +end +data_name_parts = strsplit(data_name,'.'); +for k=2:length(data_name_parts)-1 + data_name_parts{1} = [data_name_parts{1} '.' data_name_parts{k}]; +end + +% I noticed some issues with the b=0s/mm2 (the first volume) in my +% data, and I always use b=1 or b=5s/mm2 as a minimum b-val point. Maybe the following can +% be safely commented. + +% data.img = data.img(:,:,:,2:end); +% data.bvals = data.bvals(2:end); +% data.bvecs = data.bvecs(2:end,:); + +% Geometric averaging of the data per b-value + +if(isfield(data,'hdr')) + avg_data.hdr = data.hdr; +else + avg_data = make_nii(data.img(:,:,:,1),data.VD); +end +avg_data.untouch = 1; +avg_data.bvals = unique(round(data.bvals)); +avg_data.img = zeros([size(data.img(:,:,:,1)) length(avg_data.bvals)]); +avg_data.bvecs = zeros(length(avg_data.bvals),3); +avg_data.mask = data.mask; + +data.img(data.img < 0) = 0; + +for ij=1:length(avg_data.bvals) + SEL = abs(data.bvals-avg_data.bvals(ij)) < 1; + avg_data.img(:,:,:,ij) = geomean(squeeze(data.img(:,:,:,SEL)),4); +end + +data = avg_data; +clear avg_data; + +% Filter according to initial requirements +GP = data.bvals >= parameters.min_bval & data.bvals <= parameters.max_bval; +data.img = data.img(:,:,:,GP); +data.bvals = data.bvals(GP); +data.bvecs = data.bvecs(GP,:); + +% Basic definitions + +params.bvals = data.bvals; +params.bvecs = data.bvecs; + +% BUILD Signals Dictionary + +MinD = 0.1e-3; % Minimum diffusion coefficient in solution space +MaxD = 1000e-3; % Maximum + +NSignals = 300; % Number of possible solutions +DRange = logspace(log10(MinD),log10(MaxD),NSignals); + +Dictionary = DW_BuildIsotropicDictionary(data,DRange); +[GMMDictionary,GMMCouples] = DW_BuildGMMDictionaryWithCR(DRange,[5 10 20 30]); + +% Perform the two step deconvolution + +LSQNONNEG_AVG_PROFILE = zeros([size(data.img(:,:,:,1)) length(DRange)]); +L2LSQNONNEG_PRIOR_AVG_PROFILE = zeros([size(data.img(:,:,:,1)) length(DRange)]); +LSQNONNEG_CL_AVG_PROFILE = zeros([size(data.img(:,:,:,1)) length(DRange)]); + +OUTLIERS = ones(size(data.img)); + +op_lp = optimset('TolX',1e-2); +op_hp = optimset('TolX',1e-8); +if(parameters.ExtraSens == 1) + op_lp = optimset('TolX',1e-4); + op_hp = optimset('TolX',1e-16); +end +op_e16 = optimset('TolX',1e-16); + +% Step 1 - perform voxel-wise NNLS to learn the prior (with outlier +% rejection) + +min_b = min(data.bvals); + +disp('Warning - tolerances have been changed'); + +for x=1:size(data.img,1) + disp(['Total: ' num2str(x/size(data.img,1)*100) '%']); + for y=1:size(data.img,2) + for z=1:size(data.img,3) + if(data.mask(x,y,z) == 0 || isnan(data.mask(x,y,z))) + continue + end + NoisySimulatedSignal = double(squeeze(data.img(x,y,z,:))); + if(sum(NoisySimulatedSignal == 0) > 1) + continue + end + NoisySimulatedSignal = NoisySimulatedSignal/mean(NoisySimulatedSignal(data.bvals <= min_b)); + + % This solution is more sensitive to small components but also to noise + [LSQNONNEG_CL_DECONV,goodpoints] = DW_RobustDeconvFinal(Dictionary,NoisySimulatedSignal,parameters.outliers_sigma,op_hp); + OUTLIERS(x,y,z,:) = goodpoints; + + LSQNONNEG_CL_AVG_PROFILE(x,y,z,:) = LSQNONNEG_CL_DECONV; + + % This solution is much more robust to noise, and used to identify the + % number of classes to sum up the fractions + LSQNONNEG_AVG_PROFILE(x,y,z,:) = DW_RobustDeconvFinal(Dictionary,NoisySimulatedSignal,3,op_lp); + end + end +end + +% This is the voxel-wise average of the high sensitivity solution, which +% becomes the prior +PRIOR = squeeze(nanmean(nanmean(nanmean(LSQNONNEG_CL_AVG_PROFILE(:,:,:,:))))); +PRIOR(DRange > 500e-3) = 0; +PRIOR = PRIOR/sum(PRIOR); + +% This is the voxel-wise average of the low sensitivity solution. This +% might also represent an excellent prior if you are interested only in +% signal fractions. If you would like to investigate the diffusion +% coefficient of the components as well, the PRIOR above is a better +% choice, as LOW_PRIOR might enforce too much the diffusion coefficient +% towards convergence in known values +LOW_PRIOR = squeeze(nanmean(nanmean((LSQNONNEG_AVG_PROFILE(:,:,round(size(data.img,3)/2),:))))); +LOW_PRIOR(DRange > 500e-3) = 0; +LOW_PRIOR = LOW_PRIOR/sum(LOW_PRIOR); + +% CHANGE +% disp('Different assignment') +if(parameters.use_low_prior == 1) + PRIOR = LOW_PRIOR; +end + +% Heuristics to subdivide the number of classes, also taking into account +% restrictions on their own "_K" +[ClassAssignment,FinalMergedGaussians,FinalMergedGaussians_D,FinalMergedGaussians_f,OFinalMergedGaussians] = SFGMMFit(DRange,Dictionary,GMMDictionary,LOW_PRIOR,0.15,1); +[ClassAssignment_K,FinalMergedGaussians_K,FinalMergedGaussians_K_D,FinalMergedGaussians_K_f] = SFGMMFit(DRange,Dictionary,GMMDictionary,LOW_PRIOR,0.25,0); + +LambdaGrid = parameters.LambdaGrid; % The regularization parameter (L2) +IX = 1; + +for x=1:size(data.img,1) + disp(['Total: ' num2str(x/size(data.img,1)*100) '%']); + for y=1:size(data.img,2) + for z=1:size(data.img,3) + if(data.mask(x,y,z) == 0 || isnan(data.mask(x,y,z))) + continue + end + NoisySimulatedSignal = double(squeeze(data.img(x,y,z,:))); + if(sum(NoisySimulatedSignal == 0) > 1) + continue + end + + NoisySimulatedSignal = NoisySimulatedSignal/mean(NoisySimulatedSignal(data.bvals <= min_b)); + + goodpoints = squeeze(OUTLIERS(x,y,z,:))==1; + + % unique_bvals.bvals = unique(round(data.bvals(goodpoints))); + % UniqueDictionary = DW_BuildIsotropicDictionary(unique_bvals,DRange); + + L2LSQNONNEG_DECONV = DW_RegularizedDeconv(Dictionary(goodpoints,:),NoisySimulatedSignal(goodpoints),op_lp,LambdaGrid(IX),PRIOR); + L2LSQNONNEG_PRIOR_AVG_PROFILE(x,y,z,:) = L2LSQNONNEG_DECONV; + end + end +end + +% save([prefix suffix],'-v7.3') +% Create fractional / diffusion maps and save + +MAX_COMPONENTS = max(ClassAssignment); +IntegrationRanges = cell(max(ClassAssignment),1); +for ij=1:max(ClassAssignment) + IntegrationRanges{ij} = find(ClassAssignment == ij); +end + +MAX_COMPONENTS_K = max(ClassAssignment_K); +IntegrationRanges_K = cell(max(ClassAssignment_K),1); +for ij=1:max(ClassAssignment_K) + IntegrationRanges_K{ij} = find(ClassAssignment_K == ij); +end + +do_clean = 1; + + +TARGET = L2LSQNONNEG_PRIOR_AVG_PROFILE; + +% clean_data = DW_LoadData(data_name,bvec_name,bval_name,mask_name,0,'',1); +clean_data.bvals = round(clean_data.bvals); +GP = clean_data.bvals >= parameters.min_bval & clean_data.bvals < parameters.max_bval; +clean_data.img = clean_data.img(:,:,:,GP); +clean_data.bvals = clean_data.bvals(GP); +clean_data.bvecs = clean_data.bvecs(GP,:); +clean_data.hdr.dime.dim(5) = sum(GP); +clean_data.untouch = 1; + +NGnii = clean_data; +NGnii.img = NGnii.img(:,:,:,1); +NGnii.hdr.dime.dim(1) = 3; +NGnii.hdr.dime.dim(5) = 1; +NGnii.hdr.dime.bitpix = 32; +NGnii.hdr.dime.datatype = 16; + +FractionsNii = clean_data; +FractionsNii.img = zeros([size(FractionsNii.img(:,:,:,1)) MAX_COMPONENTS]); +FractionsNii.hdr.dime.dim(5) = MAX_COMPONENTS; +FractionsNii.hdr.dime.bitpix = 32; +FractionsNii.hdr.dime.datatype = 16; + +LSQNONNEG_CL_f = zeros([size(data.img(:,:,:,1)) MAX_COMPONENTS]); +LSQNONNEG_CL_D_mu = zeros([size(data.img(:,:,:,1)) MAX_COMPONENTS]); +LSQNONNEG_CL_D_sd = zeros([size(data.img(:,:,:,1)) MAX_COMPONENTS]); +NG = zeros([size(data.img(:,:,:,1)) MAX_COMPONENTS_K]); + +for x=1:size(data.img,1) + disp(['Total: ' num2str(x/size(data.img,1)*100) '%']); + for y=1:size(data.img,2) + for z=1:size(data.img,3) + if(data.mask(x,y,z) == 0 || isnan(data.mask(x,y,z))) + continue + end + deconv = squeeze(TARGET(x,y,z,:))'; + deconv(DRange > 500e-3) = 0; + deconv(end) = 0; + [LSQNONNEG_CL_D_mu(x,y,z,:),LSQNONNEG_CL_D_sd(x,y,z,:),LSQNONNEG_CL_f(x,y,z,:)] = SpectrumStatisticsInIntervals(DRange,deconv,IntegrationRanges); + [~,~,NG(x,y,z,:)] = SpectrumStatisticsInIntervals(DRange,deconv,IntegrationRanges_K); + NG(x,y,z,:) = NG(x,y,z,:)/sum(NG(x,y,z,:),4); + LSQNONNEG_CL_f(x,y,z,:) = LSQNONNEG_CL_f(x,y,z,:)/sum(LSQNONNEG_CL_f(x,y,z,:),4); + + end + end +end +if(do_clean == 1) + NGnii.img = NG(:,:,:,1); + FractionsNii.img = LSQNONNEG_CL_f; + FractionsD = FractionsNii; + FractionsD.img = LSQNONNEG_CL_D_mu; + if(contains(data_name,'.mat')) + MRTQuant.WriteNifti(NGnii,[parameters.output_prefix '_NG.nii'],0); + MRTQuant.WriteNifti(FractionsNii,[parameters.output_prefix '_f.nii'],0); + MRTQuant.WriteNifti(FractionsD,[parameters.output_prefix '_D.nii'],0); + else + save_untouch_nii(NGnii,[parameters.output_prefix '_NG.nii']); + save_untouch_nii(FractionsNii,[parameters.output_prefix '_f.nii']); + save_untouch_nii(FractionsD,[parameters.output_prefix '_D.nii']); + end +end + +end + +% Helper function for the spectral fit +function [Mean,Sd,f] = SpectrumStatisticsInIntervals(DRange,spectrum,Intervals) +Mean = zeros(length(Intervals),1); +Sd = zeros(length(Intervals),1); +f = zeros(length(Intervals),1); + +for ij=1:length(Intervals) + f(ij) = sum(spectrum(Intervals{ij})); + Mean(ij) = sum(DRange(Intervals{ij}).*spectrum(Intervals{ij}))/sum(spectrum(Intervals{ij})); + M = length(find(spectrum(Intervals{ij}) > 0)); + if(M > 0) + Sd(ij) = sqrt(sum(spectrum(Intervals{ij}).*(DRange(Intervals{ij})-Mean(ij)).^2)/((M-1)/M*sum(spectrum(Intervals{ij})))); + end +end +end + +% Helper function for the spectral fit +function [musDictionary,mu_sd_couples] = DW_BuildGMMDictionaryWithCR(DMuRange,ratios) +NSignals = length(DMuRange); +musDictionary = zeros(NSignals,NSignals*length(ratios)); +mu_sd_couples = zeros(length(DMuRange)*length(ratios),2); +index = 1; +for j=1:NSignals + for k=1:length(ratios) + musDictionary(:,(j-1)*length(ratios)+k) = Gaussian1D(DMuRange',DMuRange(j),DMuRange(j)/ratios(k)); + mu_sd_couples(index,:) = [DMuRange(j) DMuRange(j)/ratios(k)]; + index = index+1; + end +end +end + +% Helper function for the spectral fit +function Dictionary = DW_BuildIsotropicDictionary(data,DRange) + +Dictionary = zeros(length(data.bvals),length(DRange)); + +for j=1:length(DRange) + Dictionary(:,j) = exp(-data.bvals*DRange(j)); +end + +end + +% Helper function for the spectral fit +function data = DW_LoadData(data_name,bvec_name,bval_name,mask_name,load_nii_instead,noise_map,round_small_bs_to_zero,force_double) +if(exist('load_nii_instead','var') > 0 && load_nii_instead == 1) + data = load_nii(data_name); + disp('Loading with load_nii'); +else + data = load_untouch_nii(data_name); + disp('Loading with load_untouch_nii'); +end + +data.bvecs = load(bvec_name); +data.bvals = load(bval_name); +data.bvecs = data.bvecs'; +data.bvals = data.bvals'; +data.img(data.img<0) = 0; +if(data.hdr.dime.scl_slope == 0) + data.hdr.dime.scl_slope = 1; +end + +if(exist('force_double','var') > 0 && force_double == 1) + data.img = double(data.img)*data.hdr.dime.scl_slope+data.hdr.dime.scl_inter; +else + data.img = single(data.img)*data.hdr.dime.scl_slope+data.hdr.dime.scl_inter; +end + +if(exist('round_small_bs_to_zero','var') > 0 && round_small_bs_to_zero > 0) + disp('Rounding small bs to zero'); + data.bvals(data.bvals < 1) = 0; +end + +if(exist('mask_name','var') > 0 && ~isempty(mask_name)) + mask = load_untouch_nii(mask_name); + data.mask = mask.img; +else + data.mask = data.img(:,:,:,find(data.bvals<1,1))>0; +end +if(size(data.img,4) > length(data.bvals)) + % WE HAVE NOISE MAP AT THE END + disp('Noisemap found'); + data.noisemap = data.img(:,:,:,end); + data.img = data.img(:,:,:,1:end-1); + data.hdr.dime.dim(5) = size(data.img,4); +else + if(exist('noise_map', 'var') > 0 && ~isempty(noise_map)) + disp('Loading noise map'); + try + if(exist('load_nii_instead','var') > 0 && load_nii_instead == 1) + nmap = load_nii(noise_map); + else + nmap = load_untouch_nii(noise_map); + end + data.noisemap = nmap.img; + catch + disp('Error loading noisemap, please check '); + end + else + %INDEED CHECK IF A NOISE MAP EXIST + base_name = strsplit(data_name,'.'); + if(exist([base_name{1} '_noisemap.nii.gz'],'var') > 0) + disp('Found a noisemap matching dataname, loading'); + if(exist('load_nii_instead','var') > 0 && load_nii_instead == 1) + nmap = load_nii([base_name{1} '_noisemap.nii.gz']); + else + nmap = load_untouch_nii([base_name{1} '_noisemap.nii.gz']); + end + data.noisemap = nmap.img; + end + end +end +end + +% Helper function for the spectral fit +function DW_SaveData(data,out_name,niigz) +if(nargin < 3) + niigz = 1; +end +if(niigz == 1) + ext = '.nii.gz'; +else + ext = '.nii'; +end +data.img = data.img/data.hdr.dime.scl_slope-data.hdr.dime.scl_inter; +save_untouch_nii(data,[out_name ext]); +if(isfield(data,'bvals')) + bvals = data.bvals'; + bvecs = data.bvecs'; + save([out_name '.bvec'],'bvecs','-ascii'); + save([out_name '.bval'],'bvals','-ascii'); +end +if(isfield(data,'mask') > 0) + mask.hdr = data.hdr; + mask.untouch = 1; + mask.hdr.dime.dim(1) = 3; + mask.hdr.dime.dim(5) = 1; + mask.img = zeros(mask.hdr.dime.dim(2:4)); + mask.img = data.mask; + save_untouch_nii(mask,[out_name '_mask' ext]); +end +if(isfield(data,'noisemap') > 0) + mask.hdr = data.hdr; + mask.untouch = 1; + mask.hdr.dime.dim(1) = 3; + mask.hdr.dime.dim(5) = 1; + mask.img = zeros(mask.hdr.dime.dim(2:4)); + mask.img = data.noisemap; + save_untouch_nii(mask,[out_name '_noisemap' ext]); +end +end + +% Helper function for the spectral fit +function [Deconv_1,Deconv_1_clean] = DW_RegularizedDeconv(Dictionary_1,OneBigVoxelFull_1,options,lambda,x0) +if(nargin < 3) + options = optimset('TolX',1e-12,'TolFun',1e-12); +end + +% base_deconv = lsqnonneg(Dictionary_1,OneBigVoxelFull_1,options); +% Amp = sum(base_deconv); +Amp = 1; + +C = Amp*lambda*eye(size(Dictionary_1,2),size(Dictionary_1,2)); +C = C(1:size(Dictionary_1,2),1:size(Dictionary_1,2)); +Dictionary_1_padded = [Dictionary_1; C]; +OneBigVoxelFull_1_tmp = zeros(size(Dictionary_1_padded,1),1); +OneBigVoxelFull_1_tmp(1:length(OneBigVoxelFull_1)) = OneBigVoxelFull_1; +if(exist('x0','var') > 0) + OneBigVoxelFull_1_tmp(length(OneBigVoxelFull_1)+1:end) = x0; +end + +Deconv_1 = lsqnonneg(Dictionary_1_padded,double(OneBigVoxelFull_1_tmp),options); + +if(nargout > 1) + Deconv_1_clean = zeros(size(Deconv_1)); + idx = Deconv_1>0; + Deconv_1_clean(idx) = lsqnonneg(Dictionary_1(:,idx),OneBigVoxelFull_1,options); +end + +end + +% Helper function for the spectral fit +function [LSQNONNEG_CL_DECONV,goodpoints] = DW_RobustDeconvFinal(Dictionary,NoisySimulatedSignal,kappa,options) + +goodpoints = ones(size(NoisySimulatedSignal)) == 1;%squeeze(OUTLIERS(x,y,z,:))==0; +W = diag(NoisySimulatedSignal); +done = 0; +iters = 0; +if(nargin < 3) + kappa = 3; + options = optimset('TolX',1e-2); +end + +while done == 0 + iters = iters+1; + new_outliers_hes = 0; + new_outliers_hos = 0; + for iter=1:4 + LSQNONNEG_CL_DECONV = lsqnonneg(Dictionary(goodpoints,:),NoisySimulatedSignal(goodpoints),options); + residuals = NoisySimulatedSignal-Dictionary*LSQNONNEG_CL_DECONV; + sd = mad(residuals)*1.4826; + bad_guys = abs(residuals-mean(residuals))>kappa*sd; + if(sum(bad_guys(goodpoints == 1)==1) > 0) + new_outliers_hes = 1; + end + goodpoints = goodpoints & bad_guys == 0; + % disp(['Outliers (HeS): ' num2str(length(find(goodpoints==0)))]); + end + for iter=1:4 + LSQNONNEG_CL_DECONV = lsqnonneg(W(goodpoints,goodpoints)*Dictionary(goodpoints,:),W(goodpoints,goodpoints)*NoisySimulatedSignal(goodpoints),options); + W = diag((Dictionary*LSQNONNEG_CL_DECONV)); + residuals = NoisySimulatedSignal-Dictionary*LSQNONNEG_CL_DECONV; + sd = mad(residuals)*1.4826; + bad_guys = abs(residuals-mean(residuals))>kappa*sd; + if(sum(bad_guys(goodpoints == 1)==1) > 0) + new_outliers_hos = 1; + end + goodpoints = goodpoints & bad_guys == 0; + % disp(['Outliers (HoS): ' num2str(length(find(goodpoints==0)))]); + end + if(new_outliers_hos == 0 && new_outliers_hes == 0) + done = 1; + end + if(iters >= 100) + done = 1; + end +end + +LSQNONNEG_CL_DECONV = lsqnonneg(Dictionary(goodpoints,:),NoisySimulatedSignal(goodpoints),options); + +end + +% Helper function for the spectral fit +function out = Gaussian1D(x,mu,sigma) +% out = (1/(sqrt(2*pi)*sigma))*exp(-0.5*(mu-x).^2/sigma^2); +out = exp(-0.5*(mu-x).^2/sigma^2); +end + +% Helper function for the spectral fit +function [ClassAssignment,FinalMergedGaussians,FinalMergedGaussians_D,FinalMergedGaussians_f,OFinalMergedGaussians] = SFGMMFit(DRange,Dictionary,GMMDictionary,U2,MinOverlap2Merge,FuseComp12) +op_e8 = optimset('TolX',1e-8); +if(exist('MinOverlap2Merge','var') < 1) + MinOverlap2Merge = 0.15; +end +if(exist('FuseComp12','var') < 1) + FuseComp12 = 1; +end + +REC = Dictionary*U2;%(U/sum(U)); +IDEC = lsqnonneg(Dictionary*GMMDictionary,REC,op_e8); +CP = find(IDEC); +IndividualGaussians = zeros(length(DRange),length(CP)); +for ij=1:length(CP) + DCopy = zeros(size(IDEC)); + DCopy(CP(ij)) = IDEC(CP(ij)); + IndividualGaussians(:,ij) = GMMDictionary*DCopy; + + Area = sum(IndividualGaussians(:,ij)); + Ak = cumsum(IndividualGaussians(:,ij)); + IndividualGaussians(1:find(Ak >= 0.025*Area,1),ij) = 0; + IndividualGaussians(find(Ak >= 0.975*Area,1):end,ij) = 0; + +end +Overlap = zeros(length(CP),length(CP)); +for ij=1:length(CP) + for ik=1:length(CP) + % Overlap(ij,ik) = sum(min(IndividualGaussians(:,ij),IndividualGaussians(:,ik)))/sum(max(IndividualGaussians(:,ij),IndividualGaussians(:,ik))); + Overlap(ij,ik) = sum(min(IndividualGaussians(:,ij),IndividualGaussians(:,ik)))/min(sum(IndividualGaussians(:,ij)),sum(IndividualGaussians(:,ik))); + end +end +MergeComponents = 1:length(CP); +no_change = 1; +nof_changes = 0; +for ij=1:length(CP) + for ik=1:length(CP) + if(MergeComponents(ik) ~= ij && Overlap(ij,ik) > MinOverlap2Merge && Overlap(ij,ik) >= max(Overlap(ik,[1:ik-1 ik+1:end]))) + if(MergeComponents(ij) == ij) + MergeComponents(ik) = ij; + else + MergeComponents(ik) = MergeComponents(ij); + end + no_change = 1; + nof_changes = nof_changes+1; + end + end +end +disp(nof_changes) +if(nof_changes == 0) + no_change = 0; +end + +UQ = unique(MergeComponents); +MergedGaussians = zeros(length(DRange),length(UQ)); +MergedGaussians_D = zeros(length(UQ),1); +MergedGaussians_f = zeros(length(UQ),1); +for ij=1:length(UQ) + MergedGaussians(:,ij) = sum(IndividualGaussians(:,MergeComponents == UQ(ij)),2); + [MergedGaussians_D(ij),~,MergedGaussians_f(ij)] = SpectrumStatisticsInIntervals(DRange,MergedGaussians(:,ij)',{1:length(DRange)}); +end + +% Simplification rules +FinalMergeComponents = 1:length(UQ); +if(FuseComp12 == 1) + FinalMergeComponents(find(MergedGaussians_D < 0.3e-3,1)) = find(MergedGaussians_D > 0.3e-3,1); +end +FinalMergeComponents(MergedGaussians_D > 6e-3) = find(MergedGaussians_D > 6e-3,1); + +UQ = unique(FinalMergeComponents); +FinalMergedGaussians = zeros(length(DRange),length(UQ)); +OFinalMergedGaussians = FinalMergedGaussians; +FinalMergedGaussians_D = zeros(length(UQ),1); +FinalMergedGaussians_f = zeros(length(UQ),1); +for ij=1:length(UQ) + FinalMergedGaussians(:,ij) = sum(MergedGaussians(:,FinalMergeComponents == UQ(ij)),2); + OFinalMergedGaussians(:,ij) = FinalMergedGaussians(:,ij); + Area = sum(FinalMergedGaussians(:,ij)); + Ak = cumsum(FinalMergedGaussians(:,ij)); + FinalMergedGaussians(1:find(Ak >= 0.025*Area,1),ij) = 0; + FinalMergedGaussians(find(Ak >= 0.975*Area,1):end,ij) = 0; + % FinalMergedGaussians(FinalMergedGaussians(:,ij) < 0.02*max(FinalMergedGaussians(:,ij)),ij) = 0; + [FinalMergedGaussians_D(ij),~,FinalMergedGaussians_f(ij)] = SpectrumStatisticsInIntervals(DRange,FinalMergedGaussians(:,ij)',{1:length(DRange)}); +end + +ClassAssignment = zeros(length(DRange),1); + +DIX = zeros(length(FinalMergedGaussians_D),1); +for ij=1:length(DIX) + DIX(ij) = find(DRange >= FinalMergedGaussians_D(ij),1); +end +for ij=1:length(ClassAssignment) + [m,IX] = max(FinalMergedGaussians(ij,:)); + if(m ~= 0) + rM = max(ClassAssignment(1:ij-1)); + if(~isempty(rM)) + IX = max(IX,rM); + end + ClassAssignment(ij) = IX; + else + % [~,IX] = min(abs(DRange(ij)-FinalMergedGaussians_D)); + [~,IX] = min(abs(ij-DIX)); + rM = max(ClassAssignment(1:ij-1)); + if(~isempty(rM)) + IX = max(IX(1),rM); + end + ClassAssignment(ij) = IX(1); + end +end +end + +% Geometrical average per shell/unique b-val +function s1 = QuickGeoAverage(data) +data.img(data.img < 0 | isnan(data.img)) = 0; +data.bvals = round(data.bvals); +ub1 = unique(data.bvals); + +s1 = data; +s1.img = zeros([size(data.img(:,:,:,1)),length(ub1)]); + +s1.bvals = ub1; +s1.bvecs = []; + +for j=1:length(ub1) + vol = single(data.img(:,:,:,data.bvals==ub1(j))); + s1.img(:,:,:,j) = geomean(vol,4); +end + +end + +% Segmented IVIM + tissue (isotropic) fit +function [Dhigh,Dlow,f] = SegmentedIVIMFit2Comp(data,parameters) +data.img = single(data.img); +IX_high = data.bvals >= parameters.bthresh & data.bvals <= parameters.max_bval; +IX_low = data.bvals >= parameters.min_bval & data.bvals < parameters.bthresh; + +siz = size(data.img); +data.img = log(reshape(data.img,siz(1)*siz(2)*siz(3),siz(4))); +Xh = [-data.bvals(IX_high) ones(sum(IX_high==1),1)]; +HighD = Xh\data.img(:,IX_high)'; + +Dhigh.img = reshape(HighD(1,:),siz(1:3)); +Dhigh.VD = data.VD; +Dhigh.img(data.mask == 0) = 0; + +Xl =[-data.bvals(IX_low) ones(sum(IX_low==1),1)]; +LowD = Xl\data.img(:,IX_low)'; +Dlow.img = reshape(LowD(1,:),siz(1:3)); +Dlow.VD = data.VD; +Dlow.img(data.mask == 0) = 0; + +data.img = exp(data.img); +f.img = abs(data.img(:,1) - exp(HighD(2,:)'))./data.img(:,1); +f.img = reshape(f.img,siz(1:3)); +f.VD = data.VD; +f.img(data.mask == 0) = 0; +end + +% Segmented IVIM + tissue (isotropic) fit +function [DT,Dlow,f] = SegmentedIVIMFit2Comp_DT(data,parameters) +IX_high = data.bvals >= parameters.bthresh & data.bvals <= parameters.max_bval; +IX_low = data.bvals >= parameters.min_bval & data.bvals < parameters.bthresh; + +siz = size(data.img); +data.img = log(reshape(data.img,siz(1)*siz(2)*siz(3),siz(4))); +% data.img = (reshape(data.img,siz(1)*siz(2)*siz(3),siz(4))); + +bmat = MRTQuant.b_Matrix_from_bval_bvec('bval',data.bvals,'bvec',data.bvecs); +Xh = [-bmat(IX_high,:) ones(sum(IX_high==1),1)]; +DTp = Xh\data.img(:,IX_high)'; +% DTp = EDTI_Library.E_DTI_WLLS_WW(data.img(:,IX_high),Xh'); +DTp = permute(DTp,[2 1]); +DTp(data.mask(:) == 0,:) = 0; + +DT.img = reshape(DTp(:,1:6),[siz(1:3) 6]); +DT.VD = data.VD; + +Xl =[-data.bvals(IX_low) ones(sum(IX_low==1),1)]; +LowD = Xl\data.img(:,IX_low)'; +Dlow.img = reshape(LowD(1,:),siz(1:3)); +Dlow.VD = data.VD; +Dlow.img(data.mask == 0) = 0; + +data.img = exp(data.img); +f.img = abs(data.img(:,1) - exp(DTp(:,7)))./data.img(:,1); +f.img = reshape(f.img,siz(1:3)); +f.VD = data.VD; +f.img(data.mask == 0) = 0; +end + +% FW + D model +function [out,S] = FW2CompartmentsModel(x0,params) +S = x0(1)*((1-x0(2))*exp(-params.b*x0(3))+x0(2)*exp(-params.b*3e-3)); +out = params.S - S; +end + +% FW + Dt (tensor) model +function [out,S] = TensorFW2CompartmentsModel(x0,params) +S = x0(1)*((1-x0(2))*exp(-params.b*x0(3:end)')+x0(2)*exp(-params.bval*3e-3)); +out = params.S - S; +end + +% FW + Tissue (isotropic) non-linear fit +function [Dhigh,f,S0] = FWFit2Comp(data,parameters) +data.img = double(data.img); +IX_high = data.bvals >= parameters.min_bval & data.bvals <= parameters.max_bval; + +x0 = [1 0.05 0.7e-3]; +lb = [0 0 0]; +ub = [1 1 2e-3]; + +Dhigh.img = zeros(size(data.img(:,:,:,1))); +Dhigh.VD = data.VD; +f.img = zeros(size(data.img(:,:,:,1))); +f.VD = data.VD; +S0.img = zeros(size(data.img(:,:,:,1))); +S0.VD = data.VD; + +siz = size(data.img); + +data.img = (reshape(data.img,siz(1)*siz(2)*siz(3),siz(4))); +data.img = permute(data.img,[2 1]); +points2fit = find(data.mask > 0); + +options = optimset('TolX',1e-3,'TolFun',1e-3,'Display','off'); +params.b = data.bvals(IX_high); +tic +for pi=1:length(points2fit) + if(mod(pi,1000) == 0) + disp(['Free-water fit: ' num2str(pi/length(points2fit)*100) '%']); + end + params.S = data.img(IX_high,points2fit(pi)); + x0(1) = params.S(1); + ub(1) = 2*params.S(1); + p = lsqnonlin(@FW2CompartmentsModel,x0,lb,ub,options,params); + Dhigh.img(points2fit(pi)) = p(3); + f.img(points2fit(pi)) = p(2); + S0.img(points2fit(pi)) = p(1); +end +toc +end + +% FW + Tissue (isotropic) non-linear fit +function [Dt,f,S0] = TensorFWFit2Comp(data,parameters) +data.img = double(data.img); +IX_high = data.bvals >= parameters.min_bval & data.bvals <= parameters.max_bval; + +x0 = [1 0.05 zeros(1,6)]; +lb = [0 0 zeros(1,6)]; +ub = [1 1 2.5e-3*ones(1,6)]; + +Dt.img = zeros([size(data.img(:,:,:,1)) 6]); +Dt.VD = data.VD; +f.img = zeros(size(data.img(:,:,:,1))); +f.VD = data.VD; +S0.img = zeros(size(data.img(:,:,:,1))); +S0.VD = data.VD; + +siz = size(data.img); + +data.img = (reshape(data.img,siz(1)*siz(2)*siz(3),siz(4))); +data.img = permute(data.img,[2 1]); +Dt.img = reshape(Dt.img,siz(1)*siz(2)*siz(3),6); +points2fit = find(data.mask > 0); + +options = optimset('TolX',1e-3,'TolFun',1e-3,'Display','off'); +bvals = data.bvals(IX_high); +bmat = MRTQuant.b_Matrix_from_bval_bvec('bval',data.bvals,'bvec',data.bvecs); +bmat = bmat(IX_high,:); + +tic +for pi=1:length(points2fit) + if(mod(pi,1000) == 0) + disp(['Free-water fit: ' num2str(pi/length(points2fit)*100) '%']); + end + params.S = data.img(IX_high,points2fit(pi)); + p = [ones(size(bvals,1) ,1) -bmat]\log(params.S); + x0(3:end) = p(2:end); + gp = ~isnan(params.S) & params.S ~= 0; + if(any(isnan(x0)) || sum(gp) < 8) % 8 is the number of free parameters + continue + end + params.S = params.S(gp); + params.bval = bvals(gp); + params.b = bmat(gp,:); + x0(1) = params.S(1); + ub(1) = 2*params.S(1); + p = lsqnonlin(@TensorFW2CompartmentsModel,x0,lb,ub,options,params); + Dt.img(points2fit(pi),:) = p(3:end); + f.img(points2fit(pi)) = p(2); + S0.img(points2fit(pi)) = p(1); +end +toc +Dt.img = reshape(Dt.img,[siz(1:3) 6]); + +end + +% IVIM + D model +function [out,S] = IVIM2CompartmentsModel(x0,params) +S = x0(1)*((1-x0(2))*exp(-params.b*x0(3))+x0(2)*exp(-params.b*x0(4))); +out = params.S - S; +end + +% FW + Tissue (isotropic) non-linear fit +function [Dhigh,f,DStar,S0] = IVIMFit2Comp(data,parameters) +data.img = double(data.img); +IX_high = data.bvals >= parameters.min_bval & data.bvals <= parameters.max_bval; + +x0 = [1 0.05 0.7e-3 50e-3]; +lb = [0 0 0 5e-3]; +ub = [1 1 3e-3 300e-3]; + +Dhigh.img = zeros(size(data.img(:,:,:,1))); +Dhigh.VD = data.VD; +f.img = zeros(size(data.img(:,:,:,1))); +f.VD = data.VD; +S0.img = zeros(size(data.img(:,:,:,1))); +S0.VD = data.VD; +DStar.img = zeros(size(data.img(:,:,:,1))); +DStar.VD = data.VD; + +siz = size(data.img); + +data.img = (reshape(data.img,siz(1)*siz(2)*siz(3),siz(4))); +data.img = permute(data.img,[2 1]); +points2fit = find(data.mask > 0); + +options = optimset('TolX',1e-3,'TolFun',1e-3,'Display','off'); +params.b = data.bvals(IX_high); +tic +for pi=1:length(points2fit) + if(mod(pi,1000) == 0) + disp(['IVIM fit: ' num2str(pi/length(points2fit)*100) '%']); + end + params.S = data.img(IX_high,points2fit(pi)); + x0(1) = params.S(1); + ub(1) = 2*params.S(1); + p = lsqnonlin(@IVIM2CompartmentsModel,x0,lb,ub,options,params); + DStar.img(points2fit(pi)) = p(4); + Dhigh.img(points2fit(pi)) = p(3); + f.img(points2fit(pi)) = p(2); + S0.img(points2fit(pi)) = p(1); +end +toc +end + +% IVIM + FW + D model +function [out,S] = IVIMFW3CompartmentsModel(x0,params) +S0 = x0(1); +fivim = x0(2); +ffw = x0(3); +D = x0(4); +DStar = x0(5); +S = S0*((1-fivim)*((1-ffw)*exp(-params.b*D)+ffw*exp(-params.b*3e-3)) +... + fivim*exp(-params.b*DStar)); +out = params.S - S; +end + +% IVIM + FW + Tissue (isotropic) non-linear fit +function [Dhigh,DStar,ffw,fivim] = IVIMFWFit3Comp(data,parameters) +data.img = double(data.img); +IX_high = data.bvals >= parameters.min_bval & data.bvals <= parameters.max_bval; + +x0 = [1 0.05 0.05 0.7e-3 10e-3]; +lb = [0 0 0 0 6e-3]; +ub = [1 1 1 2e-3 500e-3]; + +Dhigh.img = zeros(size(data.img(:,:,:,1))); +Dhigh.VD = data.VD; +ffw.img = zeros(size(data.img(:,:,:,1))); +ffw.VD = data.VD; +fivim.img = zeros(size(data.img(:,:,:,1))); +fivim.VD = data.VD; +DStar.img = zeros(size(data.img(:,:,:,1))); +DStar.VD = data.VD; + +siz = size(data.img); + +data.img = (reshape(data.img,siz(1)*siz(2)*siz(3),siz(4))); +data.img = permute(data.img,[2 1]); +points2fit = find(data.mask > 0); + +options = optimset('TolX',1e-3,'TolFun',1e-3,'Display','off'); +params.b = data.bvals(IX_high); +tic +for pi=1:length(points2fit) + if(mod(pi,1000) == 0) + disp(['IVIM + free-water fit: ' num2str(pi/length(points2fit)*100) '%']); + end + params.S = data.img(IX_high,points2fit(pi)); + x0(1) = params.S(1); + ub(1) = 2*params.S(1); + p = lsqnonlin(@IVIMFW3CompartmentsModel,x0,lb,ub,options,params); + Dhigh.img(points2fit(pi)) = p(4); + fivim.img(points2fit(pi)) = p(2); + ffw.img(points2fit(pi)) = p(3); + DStar.img(points2fit(pi)) = p(5); +end +toc +end + +% This function implements the MK curve fit and is not part of the +% original code of ExploreDTI. (10.1016/j.neuroimage.2019.04.015) +function mkcurve_fit_mat(input_file,output_file) +data = MRTQuant.EDTI_Data_2_MRIToolkit('mat_file',input_file,'no_preproc',1); +gradient_info = load(input_file,'b','g','NrB0'); +tensors = load(input_file,'KT','DT','FA'); +% if(~isfield(tensors,'outlier')) +% tensors.outlier = false(size(data.img)); +% end +siz = size(data.img); +V = reshape(data.img,siz(1)*siz(2)*siz(3),siz(4)); +V(isnan(tensors.FA(:)),:) = 0; + +tic +g = [zeros(gradient_info.NrB0,3);gradient_info.g]; +b = gradient_info.b; +bval = sum(b(:,[1 4 6]),2); + +b_kurt = [g(:,1).^4 g(:,2).^4 g(:,3).^4 ... + 4*(g(:,1).^3).*g(:,2) 4*(g(:,1).^3).*g(:,3) ... + 4*(g(:,2).^3).*g(:,1) 4*(g(:,2).^3).*g(:,3) ... + 4*(g(:,3).^3).*g(:,1) 4*(g(:,3).^3).*g(:,2) ... + 6*(g(:,1).^2).*(g(:,2).^2) ... + 6*(g(:,1).^2).*(g(:,3).^2) ... + 6*(g(:,2).^2).*(g(:,3).^2) ... + 12*g(:,2).*g(:,3).*(g(:,1).^2) ... + 12*g(:,1).*g(:,3).*(g(:,2).^2) ... + 12*g(:,1).*g(:,2).*(g(:,3).^2)]; + +b_kurt = repmat((1/54)*(b(:,1)+b(:,4)+b(:,6)).^2,[1 15]).*b_kurt; + +b_final = [ones(size(data.img,4),1) -b b_kurt]; +Xd = pinv(b_final); + +K1 = Xd*log(V'); +DT = reshape(K1(2:7,:)',[siz(1:3) 6]); +KT = reshape(K1(8:end,:)',[siz(1:3) 15]); +MD = (DT(:,:,:,1)+DT(:,:,:,4)+DT(:,:,:,6))/3; +KT = KT./((MD*3).^2); + +DT = EDTI_Library.E_DTI_DWI_mat2cell(DT); +KT = EDTI_Library.E_DTI_DWI_mat2cell(KT); + +% MK = EDTI_Library.E_DTI_Mean_Kurtosis(KT,DT); + +A = [g(:,1).^4 g(:,2).^4 g(:,3).^4 ... + 4*(g(:,1).^3).*g(:,2) 4*(g(:,1).^3).*g(:,3) ... + 4*(g(:,2).^3).*g(:,1) 4*(g(:,2).^3).*g(:,3) ... + 4*(g(:,3).^3).*g(:,1) 4*(g(:,3).^3).*g(:,2) ... + 6*(g(:,1).^2).*(g(:,2).^2) ... + 6*(g(:,1).^2).*(g(:,3).^2) ... + 6*(g(:,2).^2).*(g(:,3).^2) ... + 12*g(:,2).*g(:,3).*(g(:,1).^2) ... + 12*g(:,1).*g(:,3).*(g(:,2).^2) ... + 12*g(:,1).*g(:,2).*(g(:,3).^2)]; + +B = [g(:,1).^2 g(:,2).^2 g(:,3).^2 2.*g(:,1).*g(:,2) 2.*g(:,1).*g(:,3) 2.*g(:,2).*g(:,3)]; + +[sx,sy,sz,st] = size(data.img); + +% MK_Q = zeros(size(data.img(:,:,:,1))); +% FA_Q = zeros(size(data.img(:,:,:,1))); +% MD_Q = zeros(size(data.img(:,:,:,1))); +% KA_Q = zeros(size(data.img(:,:,:,1))); +NEW_S0 = zeros(size(data.img(:,:,:,1))); +DT_Q = EDTI_Library.E_DTI_DWI_cell2mat(DT); +KT_Q = EDTI_Library.E_DTI_DWI_cell2mat(KT); + +DT_Q = reshape(DT_Q,sx*sy*sz,size(DT_Q,4)); +KT_Q = reshape(KT_Q,sx*sy*sz,size(KT_Q,4)); + +lambda = 0.5; + +S0 = data.img(:,:,:,1); +min_val = max(S0(:))*0.01; + +data.img = reshape(data.img,sx*sy*sz,st); +% outliers = reshape(tensors.outlier,sx*sy*sz,st); + +parfor x=1:size(data.img,1) + S = []; + GP = []; + So = squeeze(data.img(x,:))'; + if((So(1) < min_val) || any(~isfinite(So)) || isnan(tensors.FA(x))) + continue + end + l_bval = bval;%(outliers(x,:)==0); + s0_val = mean(So(l_bval <= 1)); + s0_range = linspace(0.5*s0_val,s0_val*2,100); + % [~,C_IX] = min(abs(s0_range-s0_val)); + + MK = zeros(length(s0_range),1); + + for s0_id=1:length(s0_range) + + S = So; + S(l_bval <= 1) = s0_range(s0_id); + + GP = S' ~= 0;% & outliers(x,:) == 0; + X = Xd(:,GP)*log(S(GP)); + + DT = X(2:7,:); + MD = (DT(1)+DT(4)+DT(6))/3; + KT = X(8:end,:)./((MD*3).^2); + + dt = DT([1 4 6 2 3 5]); + MDsq = MD^2; + + for i=gradient_info.NrB0+1:size(g,1) + if(GP(i) == 0) + continue + end + + dum_adc = (B(i,:)*dt).^2; + dum_kt = A(i,:)*KT; + + delta = (MDsq.*dum_kt)./dum_adc; + if(isnan(delta)) + disp('Debug'); + continue + end + + MK(s0_id) = MK(s0_id) + delta; + + end + + MK(s0_id) = MK(s0_id)/(size(g,1)-sum(GP(l_bval > 1) == 0)); + end + + last_negative = find(MK<0,1,'last'); + MKc = MK; + MKc(1:last_negative) = NaN; + [~,maxmks] = max(MKc); + + zeromks = find(diff(sign(MK)) ~= 0); + if(length(zeromks) > 1) + [~,index] = min(abs(s0_range(zeromks)-s0_range(maxmks))); + zeromks = zeromks(index); + end + + % MK(1:zeromks) = NaN; + + % corr_mk = C_IX; + corr_s0 = s0_val; + + if((~isempty(zeromks) && ~isempty(maxmks)) && zeromks < maxmks) + corr_s0 = (1-lambda)*s0_range(zeromks)+lambda*s0_range(maxmks); + % if(s0_val < corr_s0) + % [~,corr_mk] = min(abs(s0_range-corr_s0)); + % end + end + + S(1:gradient_info.NrB0) = corr_s0; + X = Xd(:,GP)*log(S(GP)); + + DT = X(2:7,:); + MD = (DT(1)+DT(4)+DT(6))/3; + KT = X(8:end,:)./((MD*3).^2); + + KT_Q(x,:) = KT; + DT_Q(x,:) = DT; + + % dt = DT([1 4 6 2 3 5]); + % MDsq = MD^2; + + % for i=gradient_info.NrB0+1:size(g,1) + % + % dum_adc = (B(i,:)*dt).^2; + % dum_kt = A(i,:)*KT; + % dum = (MDsq.*dum_kt)./dum_adc(:); + + % MK_Q(x) = MK_Q(x) + dum; + % KA_Q(x) = KA_Q(x) + dum^2; + % end + % MK_Q(x) = MK_Q(x)/size(g,1); + % KA_Q(x) = KA_Q(x)/size(g,1); + + % DT = [DT(1) DT(2)/2 DT(3)/2; + % DT(2)/2 DT(4) DT(5)/2; + % DT(3)/2 DT(5)/2 DT(6)]; + % [EVEC,EVAL] = eig(DT); + % EVAL = diag(EVAL); + % FA_Q(x) = sqrt(1.5*sum((EVAL-mean(EVAL)).^2)./sum(EVAL.^2)); + % MD_Q(x) = MD; + + % if(isnan(MK(corr_mk))) + % MK_Q(x) = MK(end); + % end + % KA_Q(x) = sqrt(abs(KA_Q(x)-MK_Q(x)^2)); + NEW_S0(x) = corr_s0; +end +toc + +DT_Q = reshape(DT_Q,sx,sy,sz,size(DT_Q,2)); +KT_Q = reshape(KT_Q,sx,sy,sz,size(KT_Q,2)); + +DT = EDTI_Library.E_DTI_DWI_mat2cell(DT_Q); +KT = EDTI_Library.E_DTI_DWI_mat2cell(KT_Q); +DWIB0 = NEW_S0; +try + copyfile(input_file,output_file); +catch +end +save(output_file,'DT','KT','DWIB0','-append'); + +end + +function out = my_help(fname) +if(isdeployed) + out = fname; +else + out = help(fname); +end +end diff --git a/Core/MRTQuant.m b/Core/MRTQuant.m index 7982962..370cef8 100644 --- a/Core/MRTQuant.m +++ b/Core/MRTQuant.m @@ -167,7 +167,7 @@ function ConformSpatialDimensions(varargin) (2*b*d-2*a*c)*dx (2*c*d+2*a*b)*dy (a*a+d*d-c*c-b*b)*dz]; if(hdr.hdr.hist.sform_code > 0) if(hdr.hdr.hist.sform_code > 0) - disp('Conflicting q and s form. Continuing with the s-form' ); + disp('Using the s-form' ); qmat = smat; end else @@ -195,7 +195,7 @@ function ConformSpatialDimensions(varargin) end if(length(unique(permute_order)) < length(permute_order)) - disp('This Conformation might be wrong.'); + disp('Please visually check the resulting image.'); % temp workaround permute_order = [1 2 3]; sign_order = [1 1 1]; @@ -226,8 +226,84 @@ function ConformSpatialDimensions(varargin) MRTQuant.WriteNifti(out_data,data_out,0); + json.CallFunction = 'MRTQuant.ConformSpatialDimensions'; + json.Description = my_help('MRTQuant.ConformSpatialDimensions'); + json.ReferenceFile = nii_file; + json.ProcessingType = 'Preprocessing'; + + json.permute_order = permute_order; + json.sign_order = sign_order; + json.original_header = hdr.hdr; + fn = strrep(strrep(data_out,'.nii',''),'.gz',''); + NiftiIO_basic.WriteJSONDescription('output',fn,'props',json); + end + function RestoreSpatialDimensions(varargin) + % Restores the original coordinate system from a json definition file. Input arguments: + % nii_file: the input file + % output: the output file + % json_file: describing the reference coordinate system. + if(isempty(varargin)) + my_help('MRTQuant.RestoreSpatialDimensions'); + return; + end + + coptions = varargin; + nii_file = GiveValueForName(coptions,'nii_file'); + if(isempty(nii_file)) + error('Missing mandatory parameter nii_file'); + end + output = GiveValueForName(coptions,'output'); + if(isempty(output)) + error('Missing mandatory parameter output'); + end + json_in = GiveValueForName(coptions,'json_file'); + if(isempty(json_in)) + error('Missing mandatory parameter json_file'); + end + + data_in = nii_file; + data_out = output; + json_def = NiftiIO_basic.ReadJSONDescription('json_file',json_in); + + try + hdr = MRTQuant.LoadNifti(data_in); + catch + data_in = [data_in '.gz']; + hdr = MRTQuant.LoadNifti(data_in); + end + + out_data.img = single(hdr.img); + + out_data.img = flip(out_data.img,1); + out_data.img = flip(out_data.img,2); + out_data.img = permute(out_data.img,[2 1 3 4]); + for ij=1:length(json_def.sign_order) + if(json_def.sign_order(ij) == -1) + out_data.img = flip(out_data.img,ij); + end + end + + out_data.img = permute(out_data.img,[json_def.permute_order; 4]); + out_data.hdr = json_def.original_header; + out_data.hdr.dime.scl_inter = 0; + out_data.hdr.dime.scl_slope = 1; + out_data.hdr.dime.datatype = 16; + out_data.hdr.dime.bitpix = 32; + out_data.untouch = 1; + save_untouch_nii(out_data,data_out); + + json.CallFunction = 'MRTQuant.ConformSpatialDimensions'; + json.Description = my_help('MRTQuant.ConformSpatialDimensions'); + json.ReferenceFile = nii_file; + json.ProcessingType = 'Preprocessing'; + + fn = strrep(strrep(data_out,'.nii',''),'.gz',''); + %NiftiIO_basic.WriteJSONDescription('output',fn,'props',json); + + end + function SetB0Val(newval) % Set the b-value threshold in s/mm2 to be considered a b=0s/mm2. % This is useful for instance when working with HCP data (set it to diff --git a/ImageRegistrations/mk_init.m b/ImageRegistrations/mk_init.m index 1d2491b..e3009cf 100644 --- a/ImageRegistrations/mk_init.m +++ b/ImageRegistrations/mk_init.m @@ -1,12 +1 @@ -%%%$ Included in MRIToolkit (https://github.com/delucaal/MRIToolkit) %%% %%% Alberto De Luca - alberto@isi.uu.nl $%%% %%% Distributed under the terms of LGPLv3 %%% - - - -% A. De Luca -% Sub-toolbox specific initialization -% 29/03/2018: creation - v1.0 -global MRIToolkit; -MRIToolkit.image_registrations_version = 1.0; - -addpath(get_executed_file_path()) -addpath(fullfile(get_executed_file_path(),'elastix_parameters')) \ No newline at end of file +%%%$ Included in MRIToolkit (https://github.com/delucaal/MRIToolkit) %%% %%% Alberto De Luca - alberto@isi.uu.nl $%%% %%% Distributed under the terms of LGPLv3 %%% % A. De Luca % Sub-toolbox specific initialization % 29/03/2018: creation - v1.0 global MRIToolkit; MRIToolkit.image_registrations_version = 1.0; addpath(get_executed_file_path()) addpath(fullfile(get_executed_file_path(),'elastix_parameters')) MRIToolkit.Elastix.Works = false; try if(~isfield(MRIToolkit.Elastix,'Location') || exist(MRIToolkit.Elastix.Location,'dir') < 1) if(exist(fullfile(userpath,'Elastix'),'dir') > 0) MRIToolkit.Elastix.Location = fullfile(userpath,'Elastix'); MRIToolkit.Elastix.ElastixCMD = fullfile(userpath,'Elastix','elastix'); MRIToolkit.Elastix.TransformixCMD = fullfile(userpath,'Elastix','transformix'); else MRIToolkit.Elastix.Location = ''; end end if(exist(MRIToolkit.Elastix.Location,'dir') > 0) if(exist(MRIToolkit.Elastix.ElastixCMD,'file') > 0 && exist(MRIToolkit.Elastix.TransformixCMD,'file') > 0) [a,b] = system(MRIToolkit.Elastix.ElastixCMD); [c,d] = system(MRIToolkit.Elastix.TransformixCMD); if(contains(b,'elastix-usage') > 0 && contains(d,'transformix-usage') > 0) MRIToolkit.Elastix.Works = true; end end end if(MRIToolkit.Elastix.Works == false) warning('There seems to be a problem with the installation of Elastix. Do you want me to attempt fixing it by downloading elastix in your home folder?'); answer = input('Answer yes/no: ',"s"); if(strcmpi(answer,'yes')) download_url = ''; if(ispc) download_url = 'https://github.com/SuperElastix/elastix/releases/download/5.1.0/elastix-5.1.0-win64.zip'; elseif(ismac) download_url = 'https://github.com/SuperElastix/elastix/releases/download/5.1.0/elastix-5.1.0-mac.zip'; elseif(isunix) download_url = 'https://github.com/SuperElastix/elastix/releases/download/5.1.0/elastix-5.1.0-linux.zip'; end urlwrite (download_url, fullfile(userpath,'Elastix.zip')); unzip(fullfile(userpath,'Elastix.zip'),fullfile(userpath,'Elastix')); delete(fullfile(userpath,'Elastix.zip')); if(ismac || isunix) system(['mv ' fullfile(userpath,'Elastix','bin','*') ' ' fullfile(userpath,'Elastix')]); system(['mv ' fullfile(userpath,'Elastix','lib','*') ' ' fullfile(userpath,'Elastix')]); end MRIToolkitGetSetVars('MRIToolkit.Elastix.Location',MRIToolkit.Elastix.Location); MRIToolkit.Elastix.Location = MRIToolkit.Elastix.Location; MRIToolkit.Elastix.ElastixCMD = fullfile(userpath,'Elastix','elastix'); MRIToolkit.Elastix.TransformixCMD = fullfile(userpath,'Elastix','transformix'); else warning('Motion correction and image registrations will not work until Elastix is properly configured.'); end end catch end \ No newline at end of file diff --git a/init/MRIToolkitGetSetVars.asv b/init/MRIToolkitGetSetVars.asv new file mode 100644 index 0000000..38f6eb0 --- /dev/null +++ b/init/MRIToolkitGetSetVars.asv @@ -0,0 +1,48 @@ +function varargout = MRIToolkitGetSetVars(varargin) + text = MRIToolkitReadLocalVarsText(); + if(nargout == 1) + % expecting output -> get + if(nargin == 1) + % input 1 = variable + found = -1; + for ij = 1:length(text) + if(contains(text{ij},varargin{1})) + % parameter found + found = ij; + break; + end + end + if(found == -1) + varargout{1} = ''; + warning('Text not found'); + else + l = strfind(text{found},''''); + varargout{1} = text{found}(l(1)+1:l(end)-1); + end + else + error('Invalid input/output combination (1 input - output expected)'); + end + elseif(nargout == 0) + % Set mode + if(nargin == 2) + % input 1 = variable, input 2 = new value + found = -1; + for ij = 1:length(text) + if(contains(text{ij},varargin{1})) + % parameter found + found = ij; + break; + end + end + if(found == -1) + for ij=length(text):-1:1 + if(contains(text,'end')) % Insert a new statement before the end + end + end + else + l = strfind(text{found},''''); + text{found} = strrep(text{found},text{found}(l(1)+1:l(end)-1),varargin{2}); + end + end + end +end \ No newline at end of file diff --git a/init/MRIToolkitGetSetVars.m b/init/MRIToolkitGetSetVars.m new file mode 100644 index 0000000..e4e8fb6 --- /dev/null +++ b/init/MRIToolkitGetSetVars.m @@ -0,0 +1,54 @@ +function varargout = MRIToolkitGetSetVars(varargin) + text = MRIToolkitReadLocalVarsText(); + if(nargout == 1) + % expecting output -> get + if(nargin == 1) + % input 1 = variable + found = -1; + for ij = 1:length(text) + if(contains(text{ij},varargin{1})) + % parameter found + found = ij; + break; + end + end + if(found == -1) + varargout{1} = ''; + warning('Text not found'); + else + l = strfind(text{found},''''); + varargout{1} = text{found}(l(1)+1:l(end)-1); + end + else + error('Invalid input/output combination (1 input - output expected)'); + end + elseif(nargout == 0) + % Set mode + if(nargin == 2) + % input 1 = variable, input 2 = new value + found = -1; + for ij = 1:length(text) + if(contains(text{ij},varargin{1})) + % parameter found + found = ij; + break; + end + end + if(found == -1) + for ij=length(text):-1:1 + if(contains(text{ij},'end')) % Insert a new statement before the end + break + end + end + new_text = text(1:ij-1); + new_text(ij) = {[varargin{1} ' = ''' varargin{2} ''';']}; + new_text = cat(1,new_text,text(ij:end)); + text = new_text; + else + l = strfind(text{found},''''); + text{found} = strrep(text{found},text{found}(l(1)+1:l(end)-1),varargin{2}); + end + MRIToolkitWriteLocalVarsText(text); + end + end +end \ No newline at end of file diff --git a/init/MRIToolkitReadLocalVarsText.m b/init/MRIToolkitReadLocalVarsText.m new file mode 100644 index 0000000..c3ff06f --- /dev/null +++ b/init/MRIToolkitReadLocalVarsText.m @@ -0,0 +1,17 @@ +function text = MRIToolkitReadLocalVarsText() + text = {}; + floc = which('MRIToolkitDefineLocalVars.m'); + if(isempty(floc)) + floc = which('TemplateMRIToolkitDefineLocalVars.m'); + end + if(isempty(floc)) + warning('I cannot find a template initialization file. Something may be wrong with this installation.') + return + end + f = fopen(floc,'rt'); + while(~feof(f)) + l = fgetl(f); + text = cat(1,text,{l}); + end + fclose(f); +end \ No newline at end of file diff --git a/init/MRIToolkitWriteLocalVarsText.m b/init/MRIToolkitWriteLocalVarsText.m new file mode 100644 index 0000000..bfecc58 --- /dev/null +++ b/init/MRIToolkitWriteLocalVarsText.m @@ -0,0 +1,11 @@ +function MRIToolkitWriteLocalVarsText(text) + floc = which('MRIToolkitDefineLocalVars.m'); + if(isempty(floc)) + floc = fullfile(userpath,'MRIToolkitDefineLocalVars.m'); + end + f = fopen(floc,'wt'); + for ij=1:length(text) + fprintf(f,'%s%s',text{ij},newline); + end + fclose(f); +end \ No newline at end of file