-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathvisualize.py
executable file
·114 lines (89 loc) · 4.55 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import argparse
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import torch
from torch.serialization import default_restore_location
from seq2seq import models, utils
from seq2seq.data.dictionary import Dictionary
from seq2seq.data.dataset import Seq2SeqDataset, BatchSampler
def get_args():
""" Defines training-specific hyper-parameters. """
parser = argparse.ArgumentParser('Sequence to Sequence Model')
parser.add_argument('--cuda', default=False, help='Use a GPU')
# Add data arguments
parser.add_argument('--data', default='prepared_data', help='path to data directory')
parser.add_argument('--source-lang', default='jp', help='source language')
parser.add_argument('--target-lang', default='en', help='target language')
parser.add_argument('--checkpoint-path', default='checkpoints/checkpoint_best.pt',
help='path to the model file')
parser.add_argument('--vis-dir', default='visualizations', help='path to the model file')
return parser.parse_args()
def main(args):
""" Main function. Visualizes attention weight arrays as nifty heat-maps. """
mpl.rc('font', family='VL Gothic')
torch.manual_seed(42)
state_dict = torch.load(args.checkpoint_path, map_location=lambda s, l: default_restore_location(s, 'cpu'))
args = argparse.Namespace(**{**vars(args), **vars(state_dict['args'])})
utils.init_logging(args)
# Load dictionaries
src_dict = Dictionary.load(os.path.join(args.data, 'dict.{:s}'.format(args.source_lang)))
print('Loaded a source dictionary ({:s}) with {:d} words'.format(args.source_lang, len(src_dict)))
tgt_dict = Dictionary.load(os.path.join(args.data, 'dict.{:s}'.format(args.target_lang)))
print('Loaded a target dictionary ({:s}) with {:d} words'.format(args.target_lang, len(tgt_dict)))
# Load dataset
test_dataset = Seq2SeqDataset(
src_file=os.path.join(args.data, 'test.{:s}'.format(args.source_lang)),
tgt_file=os.path.join(args.data, 'test.{:s}'.format(args.target_lang)),
src_dict=src_dict, tgt_dict=tgt_dict)
vis_loader = torch.utils.data.DataLoader(test_dataset, num_workers=1, collate_fn=test_dataset.collater,
batch_sampler=BatchSampler(test_dataset, None, 1, 1, 0, shuffle=False,
seed=42))
# Build model and optimization criterion
model = models.build_model(args, src_dict, tgt_dict)
if args.cuda:
model = model.cuda()
model.load_state_dict(state_dict['model'])
print('Loaded a model from checkpoint {:s}'.format(args.checkpoint_path))
# Store attention weight arrays
attn_records = list()
# Iterate over the visualization set
for i, sample in enumerate(vis_loader):
# Only visualize the first 10 sentence pairs
if i >= 10:
break
if args.cuda:
sample = utils.move_to_cuda(sample)
if len(sample) == 0:
continue
# Perform forward pass
output, attn_weights = model(sample['src_tokens'], sample['src_lengths'], sample['tgt_inputs'])
attn_records.append((sample, attn_weights))
# Generate heat-maps and store them at the designated location
if not os.path.exists(args.vis_dir):
os.makedirs(args.vis_dir)
for record_id, record in enumerate(attn_records):
# Unpack
sample, attn_map = record
src_ids = utils.strip_pad(sample['src_tokens'].data, tgt_dict.pad_idx)
tgt_ids = utils.strip_pad(sample['tgt_inputs'].data, tgt_dict.pad_idx)
# Convert indices into word tokens
src_str = src_dict.string(src_ids).split(' ') + ['<EOS>']
tgt_str = tgt_dict.string(tgt_ids).split(' ') + ['<EOS>']
# Generate heat-maps
attn_map = attn_map.squeeze(dim=0).transpose(1, 0).detach().numpy()
attn_df = pd.DataFrame(attn_map,
index=src_str,
columns=tgt_str)
sns.heatmap(attn_df, cmap='Blues', linewidths=0.25, vmin=0.0, vmax=1.0, xticklabels=True, yticklabels=True,
fmt='.3f')
plt.yticks(rotation=0)
plot_path = os.path.join(args.vis_dir, 'sentence_{:d}.png'.format(record_id))
plt.savefig(plot_path, dpi='figure', pad_inches=1, bbox_inches='tight')
plt.clf()
print('Done! Visualized attention maps have been saved to the \'{:s}\' directory!'.format(args.vis_dir))
if __name__ == '__main__':
args = get_args()
main(args)