-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject_functions.py
582 lines (457 loc) · 15.1 KB
/
project_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# imports
import numpy as np
import math
from matplotlib import pyplot as plt
import os
from numpy.linalg import norm
def load_data():
''' Load the data from the text files.
Parameters:
-----------
None
Returns:
--------
t_oil : array-like
Time array of oil production rate data (days).
oil : array-like
Data for oil production rate at tO from the study (kg/day).
t_P : array-like
Time array of pressure data (days).
pressure : array-like
Recorded pressure values during the study (kPA).
t_steam : array-like
Time array of steam injection rate data (days).
steam : array-like
Data for steam injection rate at tS from the study (kg/day).
t_temp : array-like
Time array of the temperature data (days).
temp : array-like
Recorded temperature values during the study (degrees C).
t_water : array-like
Time array of the water production rate data (days).
water : array-like
Data of water production rate at tW from the study (kg/day).
Notes:
------
File names hard coded.
'''
current_dir = os.getcwd()
os.chdir(current_dir+os.sep+'data')
t_oil,oil = np.genfromtxt('tr_oil.txt',delimiter=',',skip_header=1).T
t_P,pressure = np.genfromtxt('tr_p.txt',delimiter=',',skip_header=1).T
t_steam,steam = np.genfromtxt('tr_steam.txt',delimiter=',',skip_header=1).T
t_temp,temp = np.genfromtxt('tr_T.txt',delimiter=',',skip_header=1).T
t_water,water = np.genfromtxt('tr_water.txt',delimiter=',',skip_header=1).T
os.chdir(current_dir)
return t_oil,oil,t_P,pressure,t_steam,steam,t_temp,temp,t_water,water
def plot_data(tO,O,tP,P,tS,S,tT,T,tW,W):
''' Plot the data from the text files.
Parameters:
-----------
t_oil : array-like
Time array of oil production rate data (days).
oil : array-like
Data for oil production rate at tO from the study (kg/day).
t_P : array-like
Time array of pressure data (days).
pressure : array-like
Recorded pressure values during the study (kPA).
t_steam : array-like
Time array of steam injection rate data (days).
steam : array-like
Data for steam injection rate at tS from the study (kg/day).
t_temp : array-like
Time array of the temperature data (days).
temp : array-like
Recorded temperature values during the study (degrees C).
t_water : array-like
Time array of the water production rate data (days).
water : array-like
Data of water production rate at tW from the study (kg/day).
Returns:
--------
None
'''
# initial plots of data
f,ax1 = plt.subplots(nrows=1, ncols=1)
ax2 = ax1.twinx()
ax1.plot(tO, O, 'k.-', label='Production of bitumen (m^3/day)')
ax2.plot(tS, S, 'g.-', label='Injection of steam\n(tonnes/day, at 260°C)')
ax1.plot(tW, W, 'y.-', label='Production of water (m^3/day)')
ax1.set_xlabel('time (days)', fontsize=14)
ax1.set_ylabel('volume rate (m^3/day)', fontsize=14)
ax2.set_ylabel('mass rate (tonnes/day)', fontsize=14)
ax1.set_title('Summary of the pilot project\nSteam injection and oil-water mixture production rates', fontsize=14)
ax1.legend(bbox_to_anchor=(0.753,1), fontsize=9)
ax2.legend(bbox_to_anchor=(1,0.8))
f.set_size_inches(13.5, 5)
plt.savefig("figures/plot_data_1.png")
# plt.show()
f,ax3 = plt.subplots(nrows=1, ncols=1)
ax4 = ax3.twinx()
ax3.plot(tP, P, 'b.-', label='Pressure (kPa)')
ax4.plot(tT, T, 'r.-', label='Temperature (°C)')
ax3.set_xlabel('time (days)', fontsize=14)
ax3.set_ylabel('pressure (kPa)', fontsize=14)
ax4.set_ylabel('temperature (°C)', fontsize=14)
ax3.set_title('Summary of the pilot project\nPressure and temperature levels at 350m depth in the well', fontsize=14)
ax3.legend(bbox_to_anchor=(1,1))
ax4.legend(bbox_to_anchor=(1,0.9))
f.set_size_inches(13.5, 5)
plt.savefig("figures/plot_data_2.png")
# plt.show()
def solve_ode(f, t0, t1, dt, x0, q, pars):
''' Solve an ODE numerically.
Parameters:
-----------
f : callable
Function that returns dxdt given variable and parameter inputs.
t0 : float
Initial time of solution.
t1 : float
Final time of solution.
dt : float
Time step length.
x0 : float
Initial value of solution.
q : array-like
source/sink rate
pars : array-like
List of parameters passed to ODE function f.
Returns:
--------
ts : array-like
Independent variable solution vector.
xs : array-like
Dependent variable solution vector.
Notes:
------
ODE is solved using the Improved Euler Method.
'''
# initialise
nt = int(np.ceil((t1-t0)/dt)) # compute number of Euler steps to take
ts = t0+np.arange(nt+1)*dt # t array
xs = 0.*ts # array to store solution
xs[0] = x0 # set initial value
for i in range(nt):
dydxk = f(ts[i], xs[i], q[i], *pars) # ODE function
xs[i+1] = xs[i] + (dt/2)*(dydxk + f(ts[i], xs[i], q[i], *pars)) # take one IE step
return ts, xs
def pressure_ode_model(t, p, q, a, b, p0):
''' Return the derivative dP/dt at time, t, for given parameters.
Parameters:
-----------
t : float
Independent variable (time).
p : float
Dependent variable (pressure).
q : float
Source/sink rate.
a : float
Source/sink strength parameter.
b : float
Recharge strength parameter.
p0 : float
Initial value of dependent variable (pressure).
Returns:
--------
dPdt : float
Derivative of dependent variable (pressure) with respect to independent variable.
Examples:
---------
>>> pressure_ode_model(3,4,2,7,5,2)
-24
'''
dPdt = -(a*q + b*(p-p0))
return dPdt
def temp_ode_model(t, T, q, p, P0, T0, M0, Ts, a, b, bt):
''' Return the derivative dT/dt at time, t, for given parameters.
Parameters:
-----------
t : float
Independent variable (time).
T : float
Dependent variable (temperature).
q : float
Source/sink rate.
p : float
Pressure value.
P0 : float
Initial value of pressure.
T0 : float
Initial value of temperature.
M0 : float
Mass recharge.
Ts : float
Steam temperature.
a : float
Source/sink strength parameter.
b : float
Recharge strength parameter.
bt : float
Conduction parameter.
Returns:
--------
dTdt : float
Derivative of dependent variable (temperature) with respect to independent variable.
Examples:
---------
>>> temperature_ode_model(3, 210, 1*10**-6, 1.5, 2, 200, 1*10**6, 260, 7, 5, 1)
39.99999643
'''
if (p > P0):
T_dash = T
else:
T_dash = T0
dTdt = ((q/M0)*(Ts-T)) - ((b/(a*M0))*(p-P0)*(T_dash-T)) - (bt*(T-T0))
return dTdt
def benchmark_pressure():
''' Plots of benchmark of both Numerical and Analytical solutions obtained for pressure.
Parameters:
-----------
None
Returns:
--------
None
'''
# time vector
t_interp = np.arange(2210)
# NUMERICAL MODEL
#q = 1, a = 1, b = 1
a = 1
b = 1
q = np.ones(len(t_interp))
t_model,pressure_model = solve_ode(pressure_ode_model, 0, 221, 0.1, 1291.76, q, [a, b, 1291.76])
#ANALYTICAL MODEL
#q = 1, a = 1, b = 1
a=1
b=1
q=1
#initialise arrays
t_INT = np.linspace(0,221,2211)
Analytic_P = np.zeros(2211)
#equation
for i in range(221):
Analytic_P[i] = (((-a*q)/b)*(1-(math.exp(-b*t_INT[i])))) + 1291.76
#plot both models on same figure
f,ax = plt.subplots(nrows=1, ncols=1)
ax.plot(t_model, pressure_model, 'r*', label='numerical')
ax.plot(t_INT, Analytic_P, 'b-', label='analytic')
#plotting
ax.set_xlabel('time, t[days]')
ax.set_xlim([0.1, 10])
ax.set_ylabel('pressure, P[kPa]')
ax.set_ylim([1290.5, 1292])
ax.set_title('Benchmark: a=1.0, b=1.0, q0=1.0')
ax.legend(loc=1)
plt.savefig("figures/benchmark_pressure.png")
# plt.show()
def convergence_test_pressure():
''' A convergence is plot is obtained for different step sizes for pressure.
Parameters:
-----------
None
Returns:
--------
None
'''
#Day 1 convergence test
f,ax = plt.subplots(1,1)
t_interp = np.arange(2211)
inv_dt = []
p_dt = []
q = np.ones(len(t_interp))
for g in range (10,101,1):
t, x = solve_ode(pressure_ode_model, 0, 221, g/100, 1291.76, q, [1, 1, 1291.76])
for i in range (1,len(t)):
#day 1
if t[i] <= 1.015 and t[i] >= 0.985:
inv_dt.append(1/(g/100))
p_dt.append(x[i])
ax.plot(inv_dt, p_dt,'ro')
# get final two step sizes and pressure values (to check for convergence and find suitable step size)
h1 = inv_dt[0]
h2 = inv_dt[1]
P1 = p_dt[0]
P2 = p_dt[1]
#Labelling axis and title on the plot.
ax.set_title('Step-size convergence plot')
ax.set_ylabel('Day 1 Pressure Values at different step-sizes')
ax.set_xlabel('1/h (step-size)')
ax.set_ylim([1290.5, 1291.5])
ax.set_xlim([0, 11])
ax.text(9.1, 1291.17, 'h={:.2f}\nP={:.1f}'.format(1/h2,P2), ha='center', va='center', size=7)
ax.text(10, 1291.04, 'h={:.2f}\nP={:.1f}'.format(1/h1,P1), ha='center', va='center', size=7)
plt.savefig("figures/convergence_test_pressure.png")
# plt.show()
def benchmark_temp():
''' Plots of benchmark of both Numerical and Analytical solutions obtained for temperature.
Parameters:
-----------
None
Returns:
--------
None
'''
# time vector
t_interp = np.arange(2210)
# NUMERICAL MODEL
M0 = 8.12*10**6
Ts = 260
a = 1
b = 1
P0 = 1291.76
bt = 1
T0 = 25
q = np.ones(len(t_interp))*10**6
p = 1
temp_t_model,temp_model = solve_ode(temp_ode_model, 0, 221, 0.1, T0, q, [p, P0, T0, M0, Ts, a, b, bt])
#ANALYTICAL MODEL
#initialise arrays
Analytic_T = np.zeros(2211)
t = np.linspace(0,221,2211)
#q is constant
q= 1*10**6
#equation
for i in range(2211):
Analytic_T[i] = ((q/M0)*math.exp(-t[i]*(q/M0 - (b*(p-P0)/(a*M0)) + bt))*(Ts*(math.exp(t[i]*(q/M0 - (b*(p-P0)/(a*M0)) + bt))-1)+T0) + (T0*(bt-(b*(p-P0)/(a*M0)))))/(q/M0 - (b*(p-P0)/(a*M0)) + bt)
#plot both models on same figure
f,ax = plt.subplots(nrows=1, ncols=1)
ax.plot(temp_t_model,temp_model, 'r*', label='numerical')
ax.plot(t, Analytic_T, 'b-', label='analytic')
#plotting
ax.set_xlabel('time, t[days]')
ax.set_xlim([0, 5])
ax.set_ylabel('temp, [°C]')
ax.set_title('Benchmark: a=1.0, b=1.0, bt=1.0,\nP0=1291.76, M0= 8.12*10^6, T0=25')
ax.legend(loc=1)
plt.savefig("figures/benchmark_temp.png")
# plt.show()
def convergence_test_temperature():
''' A convergence is plot is obtained for different step sizes for temperature.
Parameters:
-----------
None
Returns:
--------
None
'''
t_interp = np.arange(2210)
M0 = 8.12*10**6
Ts = 260
a = 1
b = 1
P0 = 1.29176
bt = 1
T0 = 25
q = np.ones(len(t_interp))*10**6
p = 1
# Day 1 convergence test
f,ax = plt.subplots(1,1)
inv_dt = []
T_dt = []
for g in range (10,100,1):
t, x = solve_ode(temp_ode_model, 0, 221, g/100, T0, q, [p, P0, T0, M0, Ts, a, b, bt])
for i in range (1,len(t)):
#day 1
if t[i] <= 1.015 and t[i] >= 0.985:
inv_dt.append(1/(g/100))
T_dt.append(x[i])
ax.plot(inv_dt, T_dt,'ro')
# get final two step sizes and temperature values (to check for convergence and find suitable step size)
h1 = inv_dt[0]
h2 = inv_dt[1]
T1 = T_dt[0]
T2 = T_dt[1]
#Labelling axis and title on the plot.
ax.set_title('Temperature Step-size convergence plot')
ax.set_ylabel('Day 1 Temperature Values at different step-sizes')
ax.set_xlabel('1/h (step-size)')
ax.text(9.1, 43.8, 'h={:.2f}\nT={:.1f}'.format(1/h2,T2), ha='center', va='center', size=7)
ax.text(10, 43.8, 'h={:.2f}\nT={:.1f}'.format(1/h1,T1), ha='center', va='center', size=7)
plt.savefig("figures/convergence_test_temperature.png")
# plt.show()
def test_solve_ode():
''' Test to ensure the correct implementation of Improved Euler method in solve_ode.
Parameters:
-----------
None
Returns:
--------
None
'''
def test_dydx(x,y,q,a,b):
''' Sample ODE function to be solved in solve_ode using Improved Euler method.
Parameters:
-----------
x : float
independent variable
y : float
dependent variable
q : float
constant parameter
a : float
constant parameter
b : float
constant parameter
Returns:
--------
dydx : derivate of ODE function
'''
return (x*a*q) - y*b
a = 2
b = 3
q = np.ones(3)*2
x, y = solve_ode(test_dydx, 0, 2, 1, 1, q, [a,b])
#hand-worked expected solution
y_soln = [1,-2,8]
assert norm(y_soln-y) < 1.e-6
def test_pressure_ode_model():
''' Test to ensure correct output of pressure_ode_model.
Parameters:
-----------
None
Returns:
--------
None
'''
t= 3
p= 4
q= 2
a = 7
b = 5
p0 = 2
dPdt = pressure_ode_model(t, p, q, a, b, p0)
#hand-worked expected solution
dPdt_soln = -24
assert norm(dPdt_soln-dPdt) < 1.e-6
def test_temperature_ode_model():
''' Test to ensure correct output of temp_ode_model
Parameters:
-----------
None
Returns:
--------
None
'''
#for p < P0, T_dash = T0
t= 3
T = 210
q = 1*10**6
p= 1.5
P0 = 2
T0 = 200
M0 = 1*10**6
Ts = 260
a = 7
b = 5
bt = 1
dTdt = temp_ode_model(t, T, q, p, P0, T0, M0, Ts, a, b, bt)
##hand-worked expected solution
dTdt_soln = 39.99999643
assert norm(dTdt_soln-dTdt) < 1.e-6
#for p > p0, T_dash = T
p = 3
dTdt = temp_ode_model(t, T, q, p, P0, T0, M0, Ts, a, b, bt)
dTdt_soln = 40
assert norm(dTdt_soln-dTdt) < 1.e-6