-
Notifications
You must be signed in to change notification settings - Fork 53
/
replay_buffer.py
70 lines (55 loc) · 2.74 KB
/
replay_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
import kornia
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
class ReplayBuffer(object):
"""Buffer to store environment transitions."""
def __init__(self, obs_shape, action_shape, capacity, image_pad, device):
self.capacity = capacity
self.device = device
self.aug_trans = nn.Sequential(
nn.ReplicationPad2d(image_pad),
kornia.augmentation.RandomCrop((obs_shape[-1], obs_shape[-1])))
self.obses = np.empty((capacity, *obs_shape), dtype=np.uint8)
self.next_obses = np.empty((capacity, *obs_shape), dtype=np.uint8)
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
self.rewards = np.empty((capacity, 1), dtype=np.float32)
self.not_dones = np.empty((capacity, 1), dtype=np.float32)
self.not_dones_no_max = np.empty((capacity, 1), dtype=np.float32)
self.idx = 0
self.full = False
def __len__(self):
return self.capacity if self.full else self.idx
def add(self, obs, action, reward, next_obs, done, done_no_max):
np.copyto(self.obses[self.idx], obs)
np.copyto(self.actions[self.idx], action)
np.copyto(self.rewards[self.idx], reward)
np.copyto(self.next_obses[self.idx], next_obs)
np.copyto(self.not_dones[self.idx], not done)
np.copyto(self.not_dones_no_max[self.idx], not done_no_max)
self.idx = (self.idx + 1) % self.capacity
self.full = self.full or self.idx == 0
def sample(self, batch_size):
idxs = np.random.randint(0,
self.capacity if self.full else self.idx,
size=batch_size)
obses = self.obses[idxs]
next_obses = self.next_obses[idxs]
obses_aug = obses.copy()
next_obses_aug = next_obses.copy()
obses = torch.as_tensor(obses, device=self.device).float()
next_obses = torch.as_tensor(next_obses, device=self.device).float()
obses_aug = torch.as_tensor(obses_aug, device=self.device).float()
next_obses_aug = torch.as_tensor(next_obses_aug,
device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
not_dones_no_max = torch.as_tensor(self.not_dones_no_max[idxs],
device=self.device)
obses = self.aug_trans(obses)
next_obses = self.aug_trans(next_obses)
obses_aug = self.aug_trans(obses_aug)
next_obses_aug = self.aug_trans(next_obses_aug)
return obses, actions, rewards, next_obses, not_dones_no_max, obses_aug, next_obses_aug