DataHub frontend is a Play service written in Java. It is served as a mid-tier between DataHub GMS which is the backend service and DataHub Web.
- You need to have JDK8
installed on your machine to be able to build
DataHub Frontend
. - You need to have Chrome web browser
installed to be able to build because UI tests have a dependency on
Google Chrome
.
DataHub Frontend
is already built as part of top level build:
./gradlew build
However, if you only want to build DataHub Frontend
specifically:
./gradlew :datahub-frontend:build
To build datahub-frontend to serve the React app, build with the additional "enableReact" property:
./gradlew :datahub-frontend:build -PenableReact=true
Before starting DataHub Frontend
, you need to make sure that DataHub GMS and
all its dependencies have already started and running.
Also, user information should already be registered into the DB,
otherwise user will not be able to sign in.
To do that, first create a file named user.dat
containing below line and filling the parts <<something>>
with your information:
{"auditHeader": None, "proposedSnapshot": ("com.linkedin.pegasus2avro.metadata.snapshot.CorpUserSnapshot", {"urn": "urn:li:corpuser:<<username>>", "aspects": [{"active": True, "fullName": "<<Full Name>>", "email": "<<e-mail address>>"}, {}]}), "proposedDelta": None}
And run mce producer
script as below:
python metadata-ingestion/mce_cli.py produce -d user.dat
Or, you can run the script without providing any data file. In this case, the script will use bootstrap_mce.dat
file
to bootstrap some sample users and datasets:
python metadata-ingestion/mce_cli.py produce
This will create a default user with username datahub
. You can sign in to the app using datahub
as your username.
Quickest way to try out DataHub Frontend
is running the Docker image.
If you do modify things and want to try it out quickly without building the Docker image, you can also run the application directly from command line after a successful build:
cd datahub-frontend/run && ./run-local-frontend
If you are running the React app locally via yarn start
, it will be forwarding graphql requests to port 9002
. In order to use ./run-local-frontend
with the React app, change the PORT value in ./run/frontend.env to 9002
and restart ./run-local-frontend
After starting your application in one of the two ways mentioned above, you can connect to it by typing below into your favorite web browser:
http://localhost:9001
To be able to sign in, you need to provide your user name. You don't need to type any password.
All APIs for the application are defined in routes file. Below, you can find sample curl calls to these APIs and their responses.
http://localhost:9001/api/v2/browsePaths?type=dataset&urn=urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)
[
"/PROD/kafka/pageviews"
]
http://localhost:9001/api/v2/browse?type=dataset&path=/prod
{
"elements": [],
"start": 0,
"count": 0,
"total": 1,
"metadata": {
"totalNumEntities": 1,
"path": "",
"groups": [{
"name": "prod",
"count": 1
}]
}
}
http://localhost:9001/api/v2/search?type=dataset&input=page
{
"elements": [{
"origin": "PROD",
"name": "pageviews",
"platform": "urn:li:dataPlatform:kafka"
}],
"start": 0,
"count": 10,
"total": 1,
"searchResultMetadatas": [{
"name": "platform",
"aggregations": {
"kafka": 1
}
}, {
"name": "origin",
"aggregations": {
"prod": 1
}
}]
}
http://localhost:9001/api/v2/autocomplete?type=dataset&field=name&input=page
{
"query": "page",
"suggestions": ["pageviews"]
}
http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviewsevent,PROD)
{
"dataset": {
"platform": "kafka",
"nativeName": "pageviewsevent",
"fabric": "PROD",
"uri": "urn:li:dataset:(urn:li:dataPlatform:kafka,pageviewsevent,PROD)",
"description": "",
"nativeType": null,
"properties": null,
"tags": [],
"removed": null,
"deprecated": null,
"deprecationNote": null,
"decommissionTime": null,
"createdTime": null,
"modifiedTime": null
}
}
http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)/schema
{
"schema": {
"schemaless": false,
"rawSchema": "{\"type\":\"record\",\"name\":\"MetadataChangeEvent\",\"namespace\":\"com.linkedin.pegasus2avro.mxe\",\"doc\":\"Kafka event for proposing a metadata change for an entity.\",\"fields\":[{\"name\":\"auditHeader\",\"type\":{\"type\":\"record\",\"name\":\"KafkaAuditHeader\",\"namespace\":\"com.linkedin.pegasus2avro.avro2pegasus.events\",\"doc\":\"Header\"}}]}",
"keySchema": null,
"columns": [{
"id": null,
"sortID": 0,
"parentSortID": 0,
"fieldName": "foo",
"parentPath": null,
"fullFieldPath": "foo",
"dataType": "string",
"comment": "Bar",
"commentCount": null,
"partitionedStr": null,
"partitioned": false,
"nullableStr": null,
"nullable": false,
"indexedStr": null,
"indexed": false,
"distributedStr": null,
"distributed": false,
"treeGridClass": null
}],
"lastModified": 0
}
}
http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)/owners
{
"owners": [{
"userName": "ksahin",
"source": "UI",
"namespace": "urn:li:corpuser",
"name": "Kerem Sahin",
"email": "[email protected]",
"isGroup": false,
"isActive": true,
"idType": "USER",
"type": "DataOwner",
"subType": null,
"sortId": null,
"sourceUrl": null,
"confirmedBy": "UI",
"modifiedTime": 0
}, {
"userName": "datahub",
"source": "UI",
"namespace": "urn:li:corpuser",
"name": "Data Hub",
"email": "[email protected]",
"isGroup": false,
"isActive": true,
"idType": "USER",
"type": "DataOwner",
"subType": null,
"sortId": null,
"sourceUrl": null,
"confirmedBy": "UI",
"modifiedTime": 0
}],
"fromUpstream": false,
"datasetUrn": "urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)",
"lastModified": 0,
"actor": "ksahin"
}
http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)/institutionalmemory
{
"elements": [{
"description": "Sample doc",
"createStamp": {
"actor": "urn:li:corpuser:ksahin",
"time": 0
},
"url": "https://www.linkedin.com"
}]
}
http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)/upstreams
[{
"dataset": {
"platform": "kafka",
"nativeName": "pageViewsUpstream",
"fabric": "PROD",
"uri": "urn:li:dataset:(urn:li:dataPlatform:kafka,pageViewsUpstream,PROD)",
"description": "",
"nativeType": null,
"properties": null,
"tags": [],
"removed": null,
"deprecated": null,
"deprecationNote": null,
"decommissionTime": null,
"createdTime": null,
"modifiedTime": null
},
"type": "TRANSFORMED",
"actor": "urn:li:corpuser:ksahin",
"modified": null
}]
http://localhost:9001/api/v1/user/me
{
"user": {
"id": 0,
"userName": "ksahin",
"departmentNum": 0,
"email": "[email protected]",
"name": "Kerem Sahin",
"pictureLink": "https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Bug.svg.original.svg",
"userSetting": null
},
"status": "ok"
}
http://localhost:9001/api/v1/party/entities
{
"status": "ok",
"userEntities": [{
"label": "ksahin",
"category": "person",
"displayName": null,
"pictureLink": "https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Bug.svg.original.svg"
}, {
"label": "datahub",
"category": "person",
"displayName": null,
"pictureLink": "https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Bug.svg.original.svg"
}]
}
DataHub frontend leverages Java Authentication and Authorization Service (JAAS) to perform the authentication. By default we provided a DummyLoginModule which will accept any username/password combination. You can update jaas.conf to match your authentication requirement. For example, use the following config for LDAP-based authentication,
WHZ-Authentication {
com.sun.security.auth.module.LdapLoginModule sufficient
userProvider="ldaps://<host>:636/dc=<domain>"
authIdentity="{USERNAME}"
userFilter="(&(objectClass=person)(uid={USERNAME}))"
java.naming.security.authentication="simple"
debug="false"
useSSL="true";
};
The React app supports both JAAS as described above and separately OIDC authentication. To learn about configuring OIDC for React, see the OIDC in React document.
Most DataHub frontend API endpoints are protected using Play Authentication, which means it requires authentication information stored in the cookie for the request to go through. This makes debugging using curl difficult. One option is to first make a curl call against the /authenticate
endpoint and stores the authentication info in a cookie file like this
curl -c cookie.txt -d '{"username":"datahub", "password":"datahub"}' -H 'Content-Type: application/json' http://localhost:9001/authenticate
You can then make all subsequent calls using the same cookie file to pass the authentication check.
curl -b cookie.txt "http://localhost:9001/api/v2/search?type=dataset&input=page"