Skip to content

Latest commit

 

History

History
 
 

datahub-frontend

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DataHub Frontend

DataHub frontend is a Play service written in Java. It is served as a mid-tier between DataHub GMS which is the backend service and DataHub Web.

Pre-requisites

  • You need to have JDK8 installed on your machine to be able to build DataHub Frontend.
  • You need to have Chrome web browser installed to be able to build because UI tests have a dependency on Google Chrome.

Build

DataHub Frontend is already built as part of top level build:

./gradlew build

However, if you only want to build DataHub Frontend specifically:

./gradlew :datahub-frontend:build

Building React App

To build datahub-frontend to serve the React app, build with the additional "enableReact" property:

./gradlew :datahub-frontend:build -PenableReact=true

Dependencies

Before starting DataHub Frontend, you need to make sure that DataHub GMS and all its dependencies have already started and running.

Also, user information should already be registered into the DB, otherwise user will not be able to sign in. To do that, first create a file named user.dat containing below line and filling the parts <<something>> with your information:

{"auditHeader": None, "proposedSnapshot": ("com.linkedin.pegasus2avro.metadata.snapshot.CorpUserSnapshot", {"urn": "urn:li:corpuser:<<username>>", "aspects": [{"active": True, "fullName": "<<Full Name>>", "email": "<<e-mail address>>"}, {}]}), "proposedDelta": None}

And run mce producer script as below:

python metadata-ingestion/mce_cli.py produce -d user.dat

Or, you can run the script without providing any data file. In this case, the script will use bootstrap_mce.dat file to bootstrap some sample users and datasets:

python metadata-ingestion/mce_cli.py produce

This will create a default user with username datahub. You can sign in to the app using datahub as your username.

Start via Docker image

Quickest way to try out DataHub Frontend is running the Docker image.

Start via command line

If you do modify things and want to try it out quickly without building the Docker image, you can also run the application directly from command line after a successful build:

cd datahub-frontend/run && ./run-local-frontend

Serving React App

If you are running the React app locally via yarn start, it will be forwarding graphql requests to port 9002. In order to use ./run-local-frontend with the React app, change the PORT value in ./run/frontend.env to 9002 and restart ./run-local-frontend

Checking out DataHub UI

After starting your application in one of the two ways mentioned above, you can connect to it by typing below into your favorite web browser:

http://localhost:9001

To be able to sign in, you need to provide your user name. You don't need to type any password.

Sample API calls

All APIs for the application are defined in routes file. Below, you can find sample curl calls to these APIs and their responses.

Browse APIs

Getting current browse path

http://localhost:9001/api/v2/browsePaths?type=dataset&urn=urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)
[
"/PROD/kafka/pageviews"
]

Browsing datasets

http://localhost:9001/api/v2/browse?type=dataset&path=/prod
{
    "elements": [],
    "start": 0,
    "count": 0,
    "total": 1,
    "metadata": {
        "totalNumEntities": 1,
        "path": "",
        "groups": [{
            "name": "prod",
            "count": 1
        }]
    }
}

Search APIs

Search query

http://localhost:9001/api/v2/search?type=dataset&input=page
{
    "elements": [{
        "origin": "PROD",
        "name": "pageviews",
        "platform": "urn:li:dataPlatform:kafka"
    }],
    "start": 0,
    "count": 10,
    "total": 1,
    "searchResultMetadatas": [{
        "name": "platform",
        "aggregations": {
            "kafka": 1
        }
    }, {
        "name": "origin",
        "aggregations": {
            "prod": 1
        }
    }]
}

Autocomplete query

http://localhost:9001/api/v2/autocomplete?type=dataset&field=name&input=page
{
    "query": "page",
    "suggestions": ["pageviews"]
}

Dataset APIs

Getting basic dataset metadata

http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviewsevent,PROD)
{
    "dataset": {
        "platform": "kafka",
        "nativeName": "pageviewsevent",
        "fabric": "PROD",
        "uri": "urn:li:dataset:(urn:li:dataPlatform:kafka,pageviewsevent,PROD)",
        "description": "",
        "nativeType": null,
        "properties": null,
        "tags": [],
        "removed": null,
        "deprecated": null,
        "deprecationNote": null,
        "decommissionTime": null,
        "createdTime": null,
        "modifiedTime": null
    }
}

Getting dataset schema

http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)/schema
{
    "schema": {
        "schemaless": false,
        "rawSchema": "{\"type\":\"record\",\"name\":\"MetadataChangeEvent\",\"namespace\":\"com.linkedin.pegasus2avro.mxe\",\"doc\":\"Kafka event for proposing a metadata change for an entity.\",\"fields\":[{\"name\":\"auditHeader\",\"type\":{\"type\":\"record\",\"name\":\"KafkaAuditHeader\",\"namespace\":\"com.linkedin.pegasus2avro.avro2pegasus.events\",\"doc\":\"Header\"}}]}",
        "keySchema": null,
        "columns": [{
            "id": null,
            "sortID": 0,
            "parentSortID": 0,
            "fieldName": "foo",
            "parentPath": null,
            "fullFieldPath": "foo",
            "dataType": "string",
            "comment": "Bar",
            "commentCount": null,
            "partitionedStr": null,
            "partitioned": false,
            "nullableStr": null,
            "nullable": false,
            "indexedStr": null,
            "indexed": false,
            "distributedStr": null,
            "distributed": false,
            "treeGridClass": null
        }],
        "lastModified": 0
    }
}

Getting owners of a dataset

http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)/owners
{
    "owners": [{
        "userName": "ksahin",
        "source": "UI",
        "namespace": "urn:li:corpuser",
        "name": "Kerem Sahin",
        "email": "[email protected]",
        "isGroup": false,
        "isActive": true,
        "idType": "USER",
        "type": "DataOwner",
        "subType": null,
        "sortId": null,
        "sourceUrl": null,
        "confirmedBy": "UI",
        "modifiedTime": 0
    }, {
        "userName": "datahub",
        "source": "UI",
        "namespace": "urn:li:corpuser",
        "name": "Data Hub",
        "email": "[email protected]",
        "isGroup": false,
        "isActive": true,
        "idType": "USER",
        "type": "DataOwner",
        "subType": null,
        "sortId": null,
        "sourceUrl": null,
        "confirmedBy": "UI",
        "modifiedTime": 0
    }],
    "fromUpstream": false,
    "datasetUrn": "urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)",
    "lastModified": 0,
    "actor": "ksahin"
}

Getting dataset documents

http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)/institutionalmemory
{
    "elements": [{
        "description": "Sample doc",
        "createStamp": {
            "actor": "urn:li:corpuser:ksahin",
            "time": 0
        },
        "url": "https://www.linkedin.com"
    }]
}

Getting upstreams of a dataset

http://localhost:9001/api/v2/datasets/urn:li:dataset:(urn:li:dataPlatform:kafka,pageviews,PROD)/upstreams
[{
    "dataset": {
        "platform": "kafka",
        "nativeName": "pageViewsUpstream",
        "fabric": "PROD",
        "uri": "urn:li:dataset:(urn:li:dataPlatform:kafka,pageViewsUpstream,PROD)",
        "description": "",
        "nativeType": null,
        "properties": null,
        "tags": [],
        "removed": null,
        "deprecated": null,
        "deprecationNote": null,
        "decommissionTime": null,
        "createdTime": null,
        "modifiedTime": null
    },
    "type": "TRANSFORMED",
    "actor": "urn:li:corpuser:ksahin",
    "modified": null
}]

User APIs

Getting basic user metadata

http://localhost:9001/api/v1/user/me
{
    "user": {
        "id": 0,
        "userName": "ksahin",
        "departmentNum": 0,
        "email": "[email protected]",
        "name": "Kerem Sahin",
        "pictureLink": "https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Bug.svg.original.svg",
        "userSetting": null
    },
    "status": "ok"
}

Getting all users

http://localhost:9001/api/v1/party/entities
{
    "status": "ok",
    "userEntities": [{
        "label": "ksahin",
        "category": "person",
        "displayName": null,
        "pictureLink": "https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Bug.svg.original.svg"
    }, {
        "label": "datahub",
        "category": "person",
        "displayName": null,
        "pictureLink": "https://content.linkedin.com/content/dam/me/business/en-us/amp/brand-site/v2/bg/LI-Bug.svg.original.svg"
    }]
}

Authentication

DataHub frontend leverages Java Authentication and Authorization Service (JAAS) to perform the authentication. By default we provided a DummyLoginModule which will accept any username/password combination. You can update jaas.conf to match your authentication requirement. For example, use the following config for LDAP-based authentication,

WHZ-Authentication {
  com.sun.security.auth.module.LdapLoginModule sufficient
  userProvider="ldaps://<host>:636/dc=<domain>"
  authIdentity="{USERNAME}"
  userFilter="(&(objectClass=person)(uid={USERNAME}))"
  java.naming.security.authentication="simple"
  debug="false"
  useSSL="true";
};

Authentication in React

The React app supports both JAAS as described above and separately OIDC authentication. To learn about configuring OIDC for React, see the OIDC in React document.

API Debugging

Most DataHub frontend API endpoints are protected using Play Authentication, which means it requires authentication information stored in the cookie for the request to go through. This makes debugging using curl difficult. One option is to first make a curl call against the /authenticate endpoint and stores the authentication info in a cookie file like this

curl -c cookie.txt -d '{"username":"datahub", "password":"datahub"}' -H 'Content-Type: application/json' http://localhost:9001/authenticate

You can then make all subsequent calls using the same cookie file to pass the authentication check.

curl -b cookie.txt "http://localhost:9001/api/v2/search?type=dataset&input=page"