forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BatchNorm.cpp
223 lines (191 loc) · 7.73 KB
/
BatchNorm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Config.h>
#include <ATen/cuda/CUDAConfig.h>
#if !AT_CUDNN_ENABLED()
namespace at { namespace native {
// See Note [ATen preprocessor philosophy]
std::tuple<Tensor, Tensor, Tensor> cudnn_batch_norm(
const Tensor& input, const Tensor& weight,
const Tensor& bias, const Tensor& running_mean, const Tensor& running_var,
bool training, double exponential_average_factor, double epsilon) {
AT_ERROR("cudnn_batch_norm: ATen not compiled with cuDNN support");
}
std::tuple<Tensor, Tensor, Tensor> cudnn_batch_norm_backward(
const Tensor& input, const Tensor& grad_output, const Tensor& weight,
const Tensor& running_mean, const Tensor& running_var,
const Tensor& save_mean, const Tensor& save_var,
double epsilon) {
AT_ERROR("cudnn_batch_norm_backward: ATen not compiled with cuDNN support");
}
}} // namespace at::native
#else // AT_CUDNN_ENABLED
#include <ATen/cudnn/Descriptors.h>
#include <ATen/cudnn/Types.h>
#include <ATen/cudnn/Utils.h>
#include <ATen/cuda/Exceptions.h>
#include <ATen/TensorUtils.h>
namespace at { namespace native {
namespace {
Tensor expandScale(const Tensor& t, int64_t dim) {
std::vector<int64_t> size{ 1, t.numel() };
while (static_cast<int64_t>(size.size()) < dim) {
size.emplace_back(1);
}
return t.view(size);
}
} // namespace
std::tuple<Tensor, Tensor, Tensor> cudnn_batch_norm(
const Tensor& input_t, const Tensor& weight_t,
const Tensor& bias_t, const Tensor& running_mean_t, const Tensor& running_var_t,
bool training, double exponential_average_factor, double epsilon)
{
TensorArg input{ input_t, "input", 1 },
weight{ weight_t, "weight", 2 },
bias{ bias_t, "bias", 3 },
running_mean{ running_mean_t, "running_mean", 4 },
running_var{ running_var_t, "running_var", 5 };
CheckedFrom c = "cudnn_batch_norm";
setCuDNNStreamToCurrent();
checkAllDefined(c, {input, weight, bias});
if (!training) {
checkAllDefined(c, {running_mean, running_var});
}
checkAllSameGPU(c, {input, weight, bias, running_mean, running_var});
if (input->scalar_type() == ScalarType::Half) {
checkScalarType(c, weight, ScalarType::Float);
} else {
checkAllSameType(c, {input, weight});
}
checkAllSameType(c, {weight, bias, running_mean, running_var});
// TODO: is weight required to be contiguous?
checkAllContiguous(c, {input, weight, bias, running_mean, running_var});
checkDimRange(c, input, 2, 6 /* exclusive */);
auto num_features = input->size(1);
for (auto t : {weight, bias, running_mean, running_var}) {
if (t->defined()) {
checkNumel(c, t, num_features);
}
}
cudnnBatchNormMode_t mode;
if (input->dim() == 2) {
mode = CUDNN_BATCHNORM_PER_ACTIVATION;
} else {
mode = CUDNN_BATCHNORM_SPATIAL;
// TODO: The new CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode was
// introduced in CuDNN 7 for performance optimization, but it results in
// accuracy losses in convolution models such as ResNeXt-101 and
// video R(2+1)D. We will fall back to the normal CUDNN_BATCHNORM_SPATIAL
}
auto output_t = at::empty(input->sizes(), input->options());
TensorArg output{ output_t, "output", 0 };
auto handle = getCudnnHandle();
auto dataType = getCudnnDataType(*input);
TensorDescriptor idesc{ *input, 4 }; // input descriptor
TensorDescriptor wdesc{ expandScale(*weight, input->dim()), 4 }; // descriptor for weight, bias, running_mean, etc.
Constant one(dataType, 1);
Constant zero(dataType, 0);
Tensor save_mean, save_var;
if (training) {
int64_t num_features = input_t.size(1);
save_mean = at::empty({ num_features }, weight_t.options());
save_var = at::empty({ num_features }, weight_t.options());
AT_CUDNN_CHECK(cudnnBatchNormalizationForwardTraining(
handle, mode, &one, &zero,
idesc.desc(), input->data_ptr(),
idesc.desc(), output->data_ptr(),
wdesc.desc(),
weight->data_ptr(),
bias->data_ptr(),
exponential_average_factor,
at::maybe_data_ptr(running_mean),
at::maybe_data_ptr(running_var),
epsilon,
save_mean.data_ptr(),
save_var.data_ptr()));
} else {
AT_CUDNN_CHECK(cudnnBatchNormalizationForwardInference(
handle, mode, &one, &zero,
idesc.desc(), input->data_ptr(),
idesc.desc(), output->data_ptr(),
wdesc.desc(),
weight->data_ptr(),
bias->data_ptr(),
running_mean->data_ptr(),
running_var->data_ptr(),
epsilon));
}
// save_mean and save_var can be undefined
// If this causes problems, we can initialize them to empty tensors
// of the correct type
return std::tuple<Tensor, Tensor, Tensor>{output_t, save_mean, save_var};
}
// NB: CuDNN only implements the backward algorithm for batchnorm
// in training mode (evaluation mode batchnorm has a different algorithm),
// which is why this doesn't accept a 'training' parameter.
std::tuple<Tensor, Tensor, Tensor> cudnn_batch_norm_backward(
const Tensor& input_t, const Tensor& grad_output_t, const Tensor& weight_t,
// Unused: but we require them to be passed so that double backwards
// has access
const Tensor& running_mean, const Tensor& running_var,
const Tensor& save_mean_t, const Tensor& save_var_t,
double epsilon)
{
TensorArg input{ input_t, "input", 1 },
grad_output{ grad_output_t, "grad_output", 2 },
weight{ weight_t, "weight", 3 },
save_mean{ save_mean_t, "save_mean", 4 },
save_var{ save_var_t, "save_var", 5 };
CheckedFrom c = "cudnn_batch_norm_backward";
setCuDNNStreamToCurrent();
checkAllDefined(c, {input, grad_output, weight, save_mean, save_var});
checkAllSameGPU(c, {input, grad_output, weight, save_mean, save_var});
if (input->scalar_type() == ScalarType::Half) {
checkScalarType(c, weight, ScalarType::Float);
} else {
checkAllSameType(c, {input, weight});
}
checkAllSameType(c, {input, grad_output});
checkAllSameType(c, {weight, save_mean, save_var});
// TODO: is weight required to be contiguous?
checkAllContiguous(c, {input, grad_output, save_mean, save_var});
checkDimRange(c, input, 2, 6 /* exclusive */);
checkSameSize(c, input, grad_output);
auto num_features = input->size(1);
for (auto t : {weight, save_mean, save_var}) {
checkNumel(c, t, num_features);
}
cudnnBatchNormMode_t mode;
if (input->dim() == 2) {
mode = CUDNN_BATCHNORM_PER_ACTIVATION;
} else {
// TODO: The new CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode was
// introduced in CuDNN 7 for performance optimization, but it results in
// accuracy losses in convolution models such as ResNeXt-101 and
// video R(2+1)D. We will fall back to the normal CUDNN_BATCHNORM_SPATIAL
mode = CUDNN_BATCHNORM_SPATIAL;
}
auto grad_input_t = at::empty(input->sizes(), input->options());
auto grad_weight_t = at::empty(weight->sizes(), weight->options());
auto grad_bias_t = at::empty(weight->sizes(), weight->options());
auto handle = getCudnnHandle();
auto dataType = getCudnnDataType(*input);
TensorDescriptor idesc{ *input, 4 }; // input, output, grad_output descriptor
TensorDescriptor wdesc{ expandScale(*weight, input->dim()), 4 }; // descriptor for weight, bias, save_mean, etc.
Constant one(dataType, 1);
Constant zero(dataType, 0);
AT_CUDNN_CHECK(cudnnBatchNormalizationBackward(
handle, mode, &one, &zero, &one, &zero,
idesc.desc(), input->data_ptr(),
idesc.desc(), grad_output->data_ptr(),
idesc.desc(), grad_input_t.data_ptr(),
wdesc.desc(), weight->data_ptr(),
grad_weight_t.data_ptr(),
grad_bias_t.data_ptr(),
epsilon,
save_mean->data_ptr(),
save_var->data_ptr()));
return std::tuple<Tensor,Tensor,Tensor>{grad_input_t, grad_weight_t, grad_bias_t};
}
}} // namespace native
#endif