-
Notifications
You must be signed in to change notification settings - Fork 40
/
kiwifax.py
769 lines (693 loc) · 26.8 KB
/
kiwifax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
import array
import codecs
import logging
import os
import struct
import sys
import time
import math
import cmath
import traceback
from optparse import OptionParser
import kiwiclient
import png
# Known bugs and missing features:
# * No automatic LPM detection; useful when a station switches between 60 and 120
# * No automatic white level correction
# * When IQ input is used, the moving average would be beneficial to lower loise level
def dump_to_csv(filename, data, mode='a'):
with open(filename, mode) as fp:
for x in data:
fp.write("%.6f," % x)
fp.write("\n")
def clamp(x, xmin, xmax):
if x < xmin:
x = xmin
if x > xmax:
x = xmax
return x
def norm_clamp(x, xmin, xmax):
return (clamp(x, xmin, xmax) - xmin) / (xmax - xmin)
def fm_detect(X, prev, shift):
vals = array.array('f')
for x in X:
y = shift + cmath.phase(x * prev.conjugate()) / math.pi
vals.append(y)
prev = x
return vals
def dft_complex(input):
width = len(input)
output = []
w1d = complex(0, -2 * math.pi / width)
w1 = 0
for k in xrange(width):
X = 0
w2d = cmath.exp(w1)
w2 = complex(1, 0)
for n in xrange(width):
X += input[n] * w2
w2 *= w2d
output.append(X)
w1 += w1d
return output
def idft_complex(input):
width = len(input)
width_inv = 1.0 / width
output = []
w1d = complex(0, 2 * math.pi / width)
w1 = 0
for n in xrange(width):
X = 0
w2d = cmath.exp(w1)
w2 = complex(1, 0)
for k in xrange(width):
X += input[k] * w2
w2 *= w2d
output.append(X * width_inv)
w1 += w1d
return output
def bitreverse_sort(input):
output = list(input)
half_length = len(input) // 2
j = half_length
for i in xrange(1, len(input) - 1):
if i < j:
t = output[j]
output[j] = output[i]
output[i] = t
k = half_length
while k <= j:
j -= k
k = k >> 1
j += k
return output
def log2(x):
return math.frexp(x)[1] - 1
def fft_core(x):
length = len(x)
for l in xrange(1, log2(length) + 1):
le = 1 << l
le2 = le >> 1
w = 2 * math.pi / le
s = cmath.exp(complex(0, -w))
u = complex(1, 0)
for j in xrange(1, le2 + 1):
for i in xrange(j - 1, length, le):
o = i + le2
t = x[o] * u
x[o] = x[i] - t
x[i] = x[i] + t
u *= s
def fft_complex(input):
x = bitreverse_sort(input)
fft_core(x)
return x
def ifft_complex(input):
"Computes an inverse FFT transform for complex-valued input"
x = bitreverse_sort(input)
x = [ v.conjugate() for v in x ]
fft_core(x)
n_inv = 1.0 / len(x)
x = [ v.conjugate() * n_inv for v in x ]
return x
def power_db(input):
nf = 1.0 / len(input)
return [ 10 * math.log10(abs(x) * nf) for x in input ]
def peak_detect(data, thresh):
data = array.array('f', data)
peak_radius = 50
peaks = []
while True:
peak_index = 0
peak_value = data[peak_index]
for i in xrange(1, len(data)):
if peak_value < data[i]:
peak_value = data[i]
peak_index = i
if peak_value < thresh:
break
peaks.append((peak_index, peak_value))
for i in xrange(max(peak_index - peak_radius, 0), min(peak_index + peak_radius + 1, len(data))):
data[i] = -999
return peaks
class FMDetectorAtan2:
def __init__(self):
self._prev = complex(0)
def process(self, samples):
Y = array.array('f')
prev = self._prev
for x in samples:
y = cmath.phase(x * prev.conjugate()) / math.pi
Y.append(y)
prev = x
self._prev = prev
return Y
class IQConverterDDC:
"""Convert audio samples to IQ: digital down-convert method"""
def __init__(self, fc):
"fc is the LO frequency divided by the sample rate"
self._w = cmath.rect(1, -fc * 2 * math.pi)
self._v = complex(1)
def process(self, samples):
Y = []
for x in samples:
Y.append(x * self._v)
self._v *= self._w
return Y
class IQConverterFFT:
def __init__(self):
pass
def process(self, samples):
X = fft_complex([ complex(x) for x in samples ])
w = 1 + len(X) // 2
Y = []
for i in xrange(0, w):
Y.append(X[i])
for i in xrange(w, len(X)):
Y.append(complex(1e-6))
return ifft_complex(Y)
def interp_hermite(t, p0, p1, p2, p3):
c0 = p1
c1 = 0.5 * (p2 - p0)
c2 = p0 - 2.5 * p1 + 2 * p2 - 0.5 * p3
c3 = 0.5 * (p3 - p0) + 1.5 * (p1 - p2)
return c0 + (t * (c1 + (t * (c2 + (t * c3)))))
class Interpolator:
def __init__(self, factor):
self._buffer = array.array('f')
self._t = 0
self.set_factor(factor)
def set_factor(self, factor):
self._dt = factor
def extend(self, samples):
for x in samples:
self._buffer.append(float(x))
def __iter__(self):
return self
def next(self):
t_int = math.trunc(self._t)
t_frac = self._t - t_int
if t_int + 3 >= len(self._buffer):
self._flush()
raise StopIteration()
self._t += self._dt
return interp_hermite(t_frac, self._buffer[t_int], self._buffer[t_int + 1], self._buffer[t_int + 2], self._buffer[t_int + 3])
def _flush(self):
t_int = math.trunc(self._t)
t_new = min(t_int, len(self._buffer))
if t_new > 0:
self._t -= t_new
self._buffer = self._buffer[t_new:]
class FIRFilter:
def __init__(self, kernel):
self._kernel = kernel
self._buffer = []
def process(self, samples):
self._buffer.extend(samples)
Y = []
i = 0
while i + len(self._kernel) < len(self._buffer):
y = 0
for j in xrange(len(self._kernel)):
y += self._buffer[i+j] * self._kernel[-j-1]
Y.append(y)
i += 1
self._buffer = self._buffer[i:]
return Y
def generate_sinc(fc, length):
"Generates a sinc kernel"
h = []
w = 2 * math.pi * fc
zf = (length - 1) / 2
for i in xrange(0, length):
x = i - zf
if x == 0:
h.append(w)
else:
h.append(math.sin(w * x) / x)
return h
def generate_cosine_window_3(length, a, b, c, d):
w = (2 * math.pi) / (length - 1)
return [(a - b * math.cos(w * i) + c * math.cos(2 * w * i) -d * math.cos(3 * w * i)) for i in xrange(0, length)]
def generate_blackman_nuttall_window(length):
return generate_cosine_window_3(length, 0.3635819, 0.4891775, 0.1365995, 0.0106411)
def apply_window(h, hw):
if len(h) != len(hw):
raise ValueError("vectors must have equal lengths")
return [ h[i] * hw[i] for i in xrange(len(hw)) ]
def mapper_df_to_intensity(dfs, black_thresh, white_thresh):
for x in dfs:
yield norm_clamp(x, black_thresh, white_thresh)
class Histogram:
def __init__(self, bins, xmin, xmax):
self._min = xmin
self._max = xmax
self._bins = [ 0 for i in xrange(bins) ]
def put(self, x):
x = clamp(x, self._min, self._max)
x = (x - self._min) / (self._max - self._min)
i = int(x * (len(self._bins) - 1))
self._bins[i] += 1
def clear(self):
for i in xrange(len(self._bins)):
self._bins[i] = 0
def get(self):
s = 1.0 / sum(self._bins)
return [ x * s for x in self._bins ]
# Let them have a name
RADIOFAX_WHITE_FREQ = 2300
RADIOFAX_BLACK_FREQ = 1500
RADIOFAX_STARTSTOP_FREQ = 1900
RADIOFAX_IOC576_START_TONE = 300
RADIOFAX_IOC288_START_TONE = 675
RADIOFAX_STOP_TONE = 450
class KiwiFax(kiwiclient.KiwiSDRSoundStream):
def __init__(self, options):
super(KiwiFax, self).__init__()
self._options = options
self._ioc = options.ioc
self._lpm = options.lpm
self._state = 'idle'
self._use_iq = options.iq_stream
self._iqconverter = None
self._iqfir = None
self._tuning_offset = options.force_offset
self._ss_window_size = 4096
self._startstop_buffer = []
self._startstop_score = 0
self._prevX = complex(0)
self._phasing_count = 0
self._resampler = None
self._line_scale_factor = 1.0 - 1e-6 * options.sr_coeff
self._rows = []
self._pixel_buffer = array.array('f')
# TODO: compute instead of hardcoding
self._pixels_per_line = 1809
# NOTE: Kyodo pages are ~8500px
self._max_height = options.max_height
self._histoa = Histogram(200, -0.1, +0.1)
self._histob = Histogram(257, 0, 1)
self._new_roll()
if options.force:
self._switch_state('printing')
def _switch_state(self, new_state):
logging.info("Switching to: %s", new_state)
self._state = new_state
if new_state == 'idle':
self._startstop_score = 0
self._noise_score = 0
self._histoa.clear()
self._histob.clear()
elif new_state == 'starting':
pass
elif new_state == 'phasing':
self._new_roll()
self._phasing_count = 0
elif new_state == 'printing':
self._startstop_score = 0
elif new_state == 'stopping':
pass
def _setup_rx_params(self):
df = 1500
if self._use_iq:
# Tuned to the baseband
bw = (RADIOFAX_WHITE_FREQ - RADIOFAX_BLACK_FREQ) / 2 + df
self.set_mod('iq', -bw, +bw, self._options.frequency)
else:
# Tuned to USB (-1900 Hz)
self.set_mod('usb', RADIOFAX_BLACK_FREQ - df, RADIOFAX_WHITE_FREQ + df, self._options.frequency - 1.9)
# TODO: figure out proper AGC parameters
self.set_agc(True)
self.set_inactivity_timeout(0)
self.set_name('kiwifax.py')
# self.set_geo('Antarctica')
def _on_sample_rate_change(self):
sample_rate = float(self._sample_rate)
# Precompute everything that depends on the SR
self._iqconverter = IQConverterDDC(RADIOFAX_STARTSTOP_FREQ / sample_rate)
filter_width = 450 # Hz
filter_taps = 17
self._iqfir = FIRFilter(apply_window(generate_sinc(filter_width / sample_rate, filter_taps), generate_blackman_nuttall_window(filter_taps)))
# Start/stop detection params
resolution = sample_rate / self._ss_window_size
self._bin_size = resolution
self._startstop_center_bin = self._ss_window_size // 2 + 0
self._start576_delta = int(RADIOFAX_IOC576_START_TONE / resolution)
self._start288_delta = int(RADIOFAX_IOC288_START_TONE / resolution)
self._stop_delta = int(RADIOFAX_STOP_TONE / resolution)
self._ss_width = int(0.5 * (RADIOFAX_WHITE_FREQ - RADIOFAX_STARTSTOP_FREQ) / resolution)
logging.info("Start/stop center bin: %d; width: %d", self._startstop_center_bin, self._ss_width)
logging.info("Start side bins: %d/%d; stop side bins: %d/%d",
self._startstop_center_bin+self._start576_delta, self._startstop_center_bin-self._start576_delta,
self._startstop_center_bin+self._stop_delta, self._startstop_center_bin-self._stop_delta)
# NOTE: tone width is halved -- it should be precise anyway
self._ss_tone_width = int(0.5 * 0.5 * (RADIOFAX_STOP_TONE - RADIOFAX_IOC576_START_TONE) / resolution)
# Pixel output params
samples_per_line = sample_rate * 60.0 / self._lpm
resample_factor = (samples_per_line / self._pixels_per_line) * self._line_scale_factor
self._resampler = Interpolator(resample_factor)
logging.info("Resampling factor: %f", resample_factor)
contrast = 0.01
brightness = 0.02
shift = 0.00
self._white_level = (2 * (RADIOFAX_WHITE_FREQ - RADIOFAX_STARTSTOP_FREQ) / sample_rate) - contrast - brightness + shift
self._black_level = (2 * (RADIOFAX_BLACK_FREQ - RADIOFAX_STARTSTOP_FREQ) / sample_rate) + contrast + shift
self._fc_factor = 2 * self._bin_size / sample_rate
def _process_audio_samples(self, seq, samples, rssi):
k = 1 / 32768.0
samples = [ x * k for x in samples ]
samples = self._iqconverter.process(samples)
self._process_samples(seq, samples, rssi)
def _process_iq_samples(self, seq, samples, rssi, gps):
k = 1 / 32768.0
samples = [ x * k for x in samples ]
self._process_samples(seq, samples, rssi)
def _process_samples(self, seq, samples, rssi):
logging.info('Block: %08x, RSSI: %04d %s', seq, rssi, self._state)
if not self._use_iq:
samples = self._iqfir.process(samples)
self._process_startstop(samples)
self._process_pixels(samples)
def _startstop_score_update(self, updown):
if updown:
if self._startstop_score < 10:
self._startstop_score += 1
elif self._startstop_score > 0:
self._startstop_score -= 2
if self._startstop_score < 0:
self._startstop_score = 0
def _process_startstop(self, samples):
self._startstop_buffer.extend(samples)
# Snip out a window for start/stop processing
# Window size defines the overall size of the window
# Window shift defines how many samples are discarded after each iteration
# This allows for overlapping FFTs thus increasing temporal resolution
window_shift = self._ss_window_size / 2
while len(self._startstop_buffer) >= self._ss_window_size:
window = self._startstop_buffer[:self._ss_window_size]
self._startstop_buffer = self._startstop_buffer[window_shift:]
self._process_startstop_piece(window)
def _process_startstop_piece(self, samples):
# Compute the power spectrum
samples = fft_complex(samples)
P = power_db(samples)
# DC "removal" for IQ
if self._use_iq:
P[0] = P[1]
# Panoramize
P1 = P[len(P)//2:]
P1.extend(P[:len(P)//2])
P = P1
# DUMP POINT
if self._options.dump_spectra and self._state != 'idle':
dump_to_csv(self._output_name + '-ss.csv', P)
# Assume noise floor is the median value + 5dB
Px = P[2048-425:2048+425]
Psorted = sorted(Px)
nf_level = Psorted[len(Psorted) // 2] + 5.0
pk_level = Psorted[-1]
peaks = peak_detect(P, nf_level + 10)
logging.info("Peaks: [%s]", ' '.join([ '%04d:%+05.1f' % (x[0], x[1]) for x in peaks ]))
# For each peak, test if it's the one around the start/stop middle freq
# For 4096-wide FFT: W=981 B=640 S=810 Start576=[682,939], Stop=[618,1002]
detect_startstop = False
detect_start576L = False
detect_start576H = False
detect_stopL = False
detect_stopH = False
# Classify the peaks
for peak_bin, peak_power in peaks:
# Try to classify the peak
# Don't apply tuning correction for the start/stop center peak
if math.fabs(peak_bin - self._startstop_center_bin) < self._ss_width:
# NOTE: If force started, this doesn't get triggered properly
if self._state in ('idle', 'starting'):
self._tuning_offset = self._startstop_center_bin - peak_bin
detect_startstop = True
else:
peak_bin_relative = peak_bin + self._tuning_offset - self._startstop_center_bin
if math.fabs(peak_bin_relative - self._stop_delta) < self._ss_tone_width:
detect_stopL = True
if math.fabs(peak_bin_relative + self._stop_delta) < self._ss_tone_width:
detect_stopH = True
if math.fabs(peak_bin_relative - self._start576_delta) < self._ss_tone_width:
detect_start576L = True
if math.fabs(peak_bin_relative + self._start576_delta) < self._ss_tone_width:
detect_start576H = True
detect_start576 = detect_startstop and detect_start576L and detect_start576H
detect_stop = detect_startstop and detect_stopL and detect_stopH
if self._state in ('idle', 'starting'):
self._startstop_score_update(detect_start576)
else:
self._startstop_score_update(detect_stop)
logging.info("NF=%05.1f PK=%05.1f TO=%+04d/%+06.2fHz SS=%02d %s%s%s%s%s",
nf_level, pk_level, self._tuning_offset, self._tuning_offset * self._bin_size,
self._startstop_score,
"sS"[detect_startstop], '-5'[detect_start576L], '-5'[detect_start576H], "xX"[detect_stopL], "xX"[detect_stopH])
# Decide
if self._state == 'idle':
if self._startstop_score >= 10:
logging.critical("START DETECTED")
self._switch_state('starting')
elif self._state == 'starting':
if self._startstop_score < 3:
self._switch_state('phasing')
elif self._state == 'printing':
if self._startstop_score >= 10:
logging.critical("STOP DETECTED")
self._switch_state('stopping')
elif self._state == 'stopping':
if self._startstop_score < 3:
self._flush_rows()
self._switch_state('idle')
def _new_roll(self):
self._rows = []
ts = time.strftime('%Y%m%dT%H%MZ', time.gmtime())
self._output_name = '%s_%d' % (ts, int(self._options.frequency * 1000))
if self._options.station:
self._output_name += '_' + self._options.station
def _process_pixels(self, samples):
if not self._state in ('phasing', 'printing', 'stopping'):
return
shift = self._tuning_offset * self._fc_factor
pixels = fm_detect(samples, self._prevX, shift)
self._prevX = samples[-1]
# DUMP POINT
if self._options.dump_pixels:
dump_to_csv(self._output_name + '-px.csv', pixels)
for x in pixels:
self._histoa.put(x)
# Remap the detected region into [0,1)
pixels = array.array('f', mapper_df_to_intensity(pixels, self._black_level, self._white_level))
for x in pixels:
self._histob.put(x)
# Scale and adjust pixel rate
self._resampler.extend(pixels)
self._pixel_buffer.extend(self._resampler)
if self._state == 'phasing':
self._process_phasing()
else:
# Cut into rows of pixels
while len(self._pixel_buffer) >= self._pixels_per_line:
row = self._pixel_buffer[:self._pixels_per_line]
self._pixel_buffer = self._pixel_buffer[self._pixels_per_line:]
self._process_row(row)
def _process_phasing(self):
# Count attempts at phasing to avoid getting stuck
self._phasing_count += 1
# Skip 3-4 lines; it seems phasing is not reliable when started right away
if self._phasing_count <= 3:
self._pixel_buffer = self._pixel_buffer[self._pixels_per_line:]
return
if self._phasing_count >= 100:
logging.error("Phasing failed! Starting anyway")
self._switch_state('printing')
return
# Do a moving average of the pixel intensity
phasing_pulse_size = 90
i = 0
while i + phasing_pulse_size < len(self._pixel_buffer):
s = 0
for j in xrange(i, i + phasing_pulse_size):
s += clamp(self._pixel_buffer[j], 0, 1)
s /= phasing_pulse_size
if s >= 0.85:
self._pixel_buffer = self._pixel_buffer[i + phasing_pulse_size * 3 // 4:]
logging.info("Phasing OK")
self._switch_state('printing')
break
i += 1
else:
self._pixel_buffer = self._pixel_buffer[max(0, i - phasing_pulse_size):]
def _process_row(self, row):
pixels = array.array('B')
for x in row:
pixels.append(int(clamp(x, 0, 1) * 255))
self._rows.append(pixels)
if len(self._rows) % 16:
return
self._flush_rows()
if len(self._rows) >= self._max_height:
logging.info("Length exceeded; cutting the paper")
self._switch_state('idle')
def _flush_rows(self):
if not self._rows:
return
while True:
with open(self._output_name + '.png', 'wb') as fp:
try:
png.Writer(len(self._rows[0]), len(self._rows), greyscale=True).write(fp, self._rows)
break
except KeyboardInterrupt:
pass
# DUMP POINT
if self._options.dump_histo:
dump_to_csv(self._output_name + '-hh.csv', self._histoa.get(), 'w')
dump_to_csv(self._output_name + '-hh.csv', self._histob.get(), 'a')
KNOWN_CORRECTION_FACTORS = {
'kiwisdr.northlandradio.nz:8073': {
11030.00: -11.0,
},
'travelx.org:8073': { # +7.0
7795.00: +3.0,
9165.00: -5.0,
13988.50: +3.0,
16971.00: +4.0,
},
'travelx.org:8074': {
7795.00: +0.0,
9165.00: -14.0,
},
'reute.dyndns-remote.com:8073': {
7880.00: -15.0,
13882.50: -15.0,
},
'sarloutca.ddns.net:8073': {
7880.00: -11.0,
13882.50: -11.0,
},
'szsdr.ddns.net:8073': {
9165.00: -11.0,
},
'72.130.191.200:8073': {
9982.50: -13.0,
11090.00: -13.0,
16135.00: -13.0,
}
}
def main():
sys.stdout = codecs.getwriter('utf-8')(sys.stdout)
parser = OptionParser()
parser.add_option('-k', '--socket-timeout', '--socket_timeout',
dest='socket_timeout', type='int', default=10,
help='Timeout(sec) for sockets')
parser.add_option('-s', '--server-host', '--server_host',
dest='server_host', type='string',
default='localhost', help='server host')
parser.add_option('-p', '--server-port', '--server_port',
dest='server_port', type='int',
default=8073, help='server port (default 8073)')
parser.add_option('-q', '--iq',
dest='iq_mode',
action='store_true', default=False,
help='IQ data mode')
parser.add_option('-f', '--freq',
dest='frequency',
type='float', default=4610,
help='Frequency to tune to, in kHz (will be tuned down by 1.9kHz)')
parser.add_option('--station', '--station',
dest='station',
type='string', default=None,
help='Station ID to be appended to file names')
parser.add_option('-F', '--force-start',
dest='force',
action='store_true', default=False,
help='Force the decoding without waiting for start tone or phasing')
parser.add_option('--force-offset', '--force_offset',
dest='force_offset',
type='int', default=0,
help='When force decoding, apply this tuning offset (bins).')
parser.add_option('-i', '--ioc',
dest='ioc',
type='int', default=576,
help='Index of cooperation; default: 576.')
parser.add_option('-l', '--lpm',
dest='lpm',
type='int', default=120,
help='Lines per minute; default: 120.')
parser.add_option('--sr-coeff', '--sr_coeff',
dest='sr_coeff',
type='float', default=0,
help='Sample frequency correction, ppm; positive if the lines are too short; negative otherwise')
parser.add_option('--max-height', '--max_height',
dest='max_height',
type='int', default=2300,
help='Maximum page height; default: 2300.')
parser.add_option('--dump-spectra', '--dump-spectra',
dest='dump_spectra',
action='store_true', default=False,
help='Dump block spectra to a CSV file')
parser.add_option('--dump-pixels', '--dump-pixels',
dest='dump_pixels',
action='store_true', default=False,
help='Dump row pixels to a CSV file')
parser.add_option('--dump-histo', '--dump_histo',
dest='dump_histo',
action='store_true', default=False,
help='Dump pixel intensity histograms to a CSV file')
parser.add_option('--iq-stream', '--iq_stream',
dest='iq_stream',
action='store_true', default=False,
help='EXPERIMENTAL: use IQ stream instead of audio')
(options, unused_args) = parser.parse_args()
# Setup logging
fmtr = logging.Formatter('%(asctime)s %(levelname)s: %(message)s', '%Y%m%dT%H%MZ')
fmtr.converter = time.gmtime
fh = logging.FileHandler('log_%s_%d_%d.log' % (options.server_host, options.server_port, int(options.frequency * 1000)))
fh.setLevel(logging.DEBUG)
fh.setFormatter(fmtr)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(fmtr)
rootLogger = logging.getLogger()
rootLogger.setLevel(logging.INFO)
rootLogger.addHandler(fh)
rootLogger.addHandler(ch)
logging.critical('* * * * * * * *')
logging.critical('Logging started')
if options.sr_coeff == 0:
server_identity = '%s:%d' % (options.server_host, options.server_port)
try:
coeffs = KNOWN_CORRECTION_FACTORS[server_identity]
known_coeff = coeffs[options.frequency]
options.sr_coeff = known_coeff
logging.info('Applying known correction %f for host %s', known_coeff, server_identity)
except KeyError:
pass
while True:
recorder = KiwiFax(options)
# Connect
try:
recorder.connect(options.server_host, options.server_port)
except KeyboardInterrupt:
break
except Exception as e:
traceback.print_exc()
print "Failed to connect, sleeping and reconnecting"
time.sleep(15)
continue
# Record
try:
recorder.run()
break
except (kiwiclient.KiwiTooBusyError, kiwiclient.KiwiBadPasswordError):
print "Server too busy now, sleeping and reconnecting"
time.sleep(15)
continue
except Exception as e:
traceback.print_exc()
break
print "exiting"
if __name__ == '__main__':
main()
# EOF