-
Notifications
You must be signed in to change notification settings - Fork 40
/
png.py
1074 lines (963 loc) · 38.6 KB
/
png.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# png.py - PNG encoder in pure Python
# Copyright (C) 2006 Johann C. Rocholl <[email protected]>
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Contributors (alphabetical):
# Nicko van Someren <[email protected]>
#
# Changelog (recent first):
# 2006-06-17 Nicko: Reworked into a class, faster interlacing.
# 2006-06-17 Johann: Very simple prototype PNG decoder.
# 2006-06-17 Nicko: Test suite with various image generators.
# 2006-06-17 Nicko: Alpha-channel, grey-scale, 16-bit/plane support.
# 2006-06-15 Johann: Scanline iterator interface for large input files.
# 2006-06-09 Johann: Very simple prototype PNG encoder.
"""
Pure Python PNG Reader/Writer
This is an implementation of a subset of the PNG specification at
http://www.w3.org/TR/2003/REC-PNG-20031110 in pure Python. It reads
and writes PNG files with 8/16/24/32/48/64 bits per pixel (greyscale,
RGB, RGBA, with 8 or 16 bits per layer), with a number of options. For
help, type "import png; help(png)" in your python interpreter.
This file can also be used as a command-line utility to convert PNM
files to PNG. The interface is similar to that of the pnmtopng program
from the netpbm package. Type "python png.py --help" at the shell
prompt for usage and a list of options.
"""
__revision__ = '$Rev$'
__date__ = '$Date$'
__author__ = '$Author$'
import sys
import zlib
import struct
import math
from array import array
_adam7 = ((0, 0, 8, 8),
(4, 0, 8, 8),
(0, 4, 4, 8),
(2, 0, 4, 4),
(0, 2, 2, 4),
(1, 0, 2, 2),
(0, 1, 1, 2))
def interleave_planes(ipixels, apixels, ipsize, apsize):
"""
Interleave color planes, e.g. RGB + A = RGBA.
Return an array of pixels consisting of the ipsize bytes of data
from each pixel in ipixels followed by the apsize bytes of data
from each pixel in apixels, for an image of size width x height.
"""
itotal = len(ipixels)
atotal = len(apixels)
newtotal = itotal + atotal
newpsize = ipsize + apsize
# Set up the output buffer
out = array('B')
# It's annoying that there is no cheap way to set the array size :-(
out.extend(ipixels)
out.extend(apixels)
# Interleave in the pixel data
for i in range(ipsize):
out[i:newtotal:newpsize] = ipixels[i:itotal:ipsize]
for i in range(apsize):
out[i+ipsize:newtotal:newpsize] = apixels[i:atotal:apsize]
return out
class Error(Exception):
pass
class Writer:
"""
PNG encoder in pure Python.
"""
def __init__(self, width, height,
transparent=None,
background=None,
gamma=None,
greyscale=False,
has_alpha=False,
bytes_per_sample=1,
compression=None,
interlaced=False,
chunk_limit=2**20):
"""
Create a PNG encoder object.
Arguments:
width, height - size of the image in pixels
transparent - create a tRNS chunk
background - create a bKGD chunk
gamma - create a gAMA chunk
greyscale - input data is greyscale, not RGB
has_alpha - input data has alpha channel (RGBA)
bytes_per_sample - 8-bit or 16-bit input data
compression - zlib compression level (1-9)
chunk_limit - write multiple IDAT chunks to save memory
If specified, the transparent and background parameters must
be a tuple with three integer values for red, green, blue, or
a simple integer (or singleton tuple) for a greyscale image.
If specified, the gamma parameter must be a float value.
"""
if width <= 0 or height <= 0:
raise ValueError("width and height must be greater than zero")
if has_alpha and transparent is not None:
raise ValueError(
"transparent color not allowed with alpha channel")
if bytes_per_sample < 1 or bytes_per_sample > 2:
raise ValueError("bytes per sample must be 1 or 2")
if transparent is not None:
if greyscale:
if type(transparent) is not int:
raise ValueError(
"transparent color for greyscale must be integer")
else:
if not (len(transparent) == 3 and
type(transparent[0]) is int and
type(transparent[1]) is int and
type(transparent[2]) is int):
raise ValueError(
"transparent color must be a triple of integers")
if background is not None:
if greyscale:
if type(background) is not int:
raise ValueError(
"background color for greyscale must be integer")
else:
if not (len(background) == 3 and
type(background[0]) is int and
type(background[1]) is int and
type(background[2]) is int):
raise ValueError(
"background color must be a triple of integers")
self.width = width
self.height = height
self.transparent = transparent
self.background = background
self.gamma = gamma
self.greyscale = greyscale
self.has_alpha = has_alpha
self.bytes_per_sample = bytes_per_sample
self.compression = compression
self.chunk_limit = chunk_limit
self.interlaced = interlaced
if self.greyscale:
self.color_depth = 1
if self.has_alpha:
self.color_type = 4
self.psize = self.bytes_per_sample * 2
else:
self.color_type = 0
self.psize = self.bytes_per_sample
else:
self.color_depth = 3
if self.has_alpha:
self.color_type = 6
self.psize = self.bytes_per_sample * 4
else:
self.color_type = 2
self.psize = self.bytes_per_sample * 3
def write_chunk(self, outfile, tag, data):
"""
Write a PNG chunk to the output file, including length and checksum.
"""
# http://www.w3.org/TR/PNG/#5Chunk-layout
outfile.write(struct.pack("!I", len(data)))
outfile.write(tag)
outfile.write(data)
checksum = zlib.crc32(tag)
checksum = zlib.crc32(data, checksum)
outfile.write(struct.pack("!i", checksum))
def write(self, outfile, scanlines):
"""
Write a PNG image to the output file.
"""
# http://www.w3.org/TR/PNG/#5PNG-file-signature
outfile.write(struct.pack("8B", 137, 80, 78, 71, 13, 10, 26, 10))
# http://www.w3.org/TR/PNG/#11IHDR
if self.interlaced:
interlaced = 1
else:
interlaced = 0
self.write_chunk(outfile, 'IHDR',
struct.pack("!2I5B", self.width, self.height,
self.bytes_per_sample * 8,
self.color_type, 0, 0, interlaced))
# http://www.w3.org/TR/PNG/#11tRNS
if self.transparent is not None:
if self.greyscale:
self.write_chunk(outfile, 'tRNS',
struct.pack("!1H", *self.transparent))
else:
self.write_chunk(outfile, 'tRNS',
struct.pack("!3H", *self.transparent))
# http://www.w3.org/TR/PNG/#11bKGD
if self.background is not None:
if self.greyscale:
self.write_chunk(outfile, 'bKGD',
struct.pack("!1H", *self.background))
else:
self.write_chunk(outfile, 'bKGD',
struct.pack("!3H", *self.background))
# http://www.w3.org/TR/PNG/#11gAMA
if self.gamma is not None:
self.write_chunk(outfile, 'gAMA',
struct.pack("!L", int(self.gamma * 100000)))
# http://www.w3.org/TR/PNG/#11IDAT
if self.compression is not None:
compressor = zlib.compressobj(self.compression)
else:
compressor = zlib.compressobj()
data = array('B')
for scanline in scanlines:
data.append(0)
data.extend(scanline)
if len(data) > self.chunk_limit:
compressed = compressor.compress(data.tostring())
if len(compressed):
# print >> sys.stderr, len(data), len(compressed)
self.write_chunk(outfile, 'IDAT', compressed)
data = array('B')
if len(data):
compressed = compressor.compress(data.tostring())
else:
compressed = ''
flushed = compressor.flush()
if len(compressed) or len(flushed):
# print >> sys.stderr, len(data), len(compressed), len(flushed)
self.write_chunk(outfile, 'IDAT', compressed + flushed)
# http://www.w3.org/TR/PNG/#11IEND
self.write_chunk(outfile, 'IEND', '')
def write_array(self, outfile, pixels):
"""
Encode a pixel array to PNG and write output file.
"""
if self.interlaced:
self.write(outfile, self.array_scanlines_interlace(pixels))
else:
self.write(outfile, self.array_scanlines(pixels))
def convert_ppm(self, ppmfile, outfile):
"""
Convert a PPM file containing raw pixel data into a PNG file
with the parameters set in the writer object.
"""
if self.interlaced:
pixels = array('B')
pixels.fromfile(ppmfile,
self.bytes_per_sample * self.color_depth *
self.width * self.height)
self.write(outfile, self.array_scanlines_interlace(pixels))
else:
self.write(outfile, self.file_scanlines(ppmfile))
def convert_ppm_and_pgm(self, ppmfile, pgmfile, outfile):
"""
Convert a PPM and PGM file containing raw pixel data into a
PNG outfile with the parameters set in the writer object.
"""
pixels = array('B')
pixels.fromfile(ppmfile,
self.bytes_per_sample * self.color_depth *
self.width * self.height)
apixels = array('B')
apixels.fromfile(pgmfile,
self.bytes_per_sample *
self.width * self.height)
pixels = interleave_planes(pixels, apixels,
self.bytes_per_sample * self.color_depth,
self.bytes_per_sample)
if self.interlaced:
self.write(outfile, self.array_scanlines_interlace(pixels))
else:
self.write(outfile, self.array_scanlines(pixels))
def file_scanlines(self, infile):
"""
Generator for scanlines from an input file.
"""
row_bytes = self.psize * self.width
for y in range(self.height):
scanline = array('B')
scanline.fromfile(infile, row_bytes)
yield scanline
def array_scanlines(self, pixels):
"""
Generator for scanlines from an array.
"""
row_bytes = self.width * self.psize
stop = 0
for y in range(self.height):
start = stop
stop = start + row_bytes
yield pixels[start:stop]
def old_array_scanlines_interlace(self, pixels):
"""
Generator for interlaced scanlines from an array.
http://www.w3.org/TR/PNG/#8InterlaceMethods
"""
row_bytes = self.psize * self.width
for xstart, ystart, xstep, ystep in _adam7:
for y in range(ystart, self.height, ystep):
if xstart < self.width:
if xstep == 1:
offset = y*row_bytes
yield pixels[offset:offset+row_bytes]
else:
row = array('B')
offset = y*row_bytes + xstart* self.psize
skip = self.psize * xstep
for x in range(xstart, self.width, xstep):
row.extend(pixels[offset:offset + self.psize])
offset += skip
yield row
def array_scanlines_interlace(self, pixels):
"""
Generator for interlaced scanlines from an array.
http://www.w3.org/TR/PNG/#8InterlaceMethods
"""
row_bytes = self.psize * self.width
for xstart, ystart, xstep, ystep in _adam7:
for y in range(ystart, self.height, ystep):
if xstart >= self.width:
continue
if xstep == 1:
offset = y * row_bytes
yield pixels[offset:offset+row_bytes]
else:
row = array('B')
# Note we want the ceiling of (self.width - xstart) / xtep
row_len = self.psize * (
(self.width - xstart + xstep - 1) / xstep)
# There's no easier way to set the length of an array
row.extend(pixels[0:row_len])
offset = y * row_bytes + xstart * self.psize
end_offset = (y+1) * row_bytes
skip = self.psize * xstep
for i in range(self.psize):
row[i:row_len:self.psize] = \
pixels[offset+i:end_offset:skip]
yield row
class _readable:
"""
A simple file-like interface for strings and arrays.
"""
def __init__(self, buf):
self.buf = buf
self.offset = 0
def read(self, n):
r = buf[offset:offset+n]
if isinstance(r, array):
r = r.tostring()
offset += n
return r
class Reader:
"""
PNG decoder in pure Python.
"""
def __init__(self, _guess=None, **kw):
"""
Create a PNG decoder object.
The constructor expects exactly one keyword argument. If you
supply a positional argument instead, it will guess the input
type. You can choose among the following arguments:
filename - name of PNG input file
file - object with a read() method
pixels - array or string with PNG data
"""
if ((_guess is not None and len(kw) != 0) or
(_guess is None and len(kw) != 1)):
raise TypeError("Reader() takes exactly 1 argument")
if _guess is not None:
if isinstance(_guess, array):
kw["pixels"] = _guess
elif isinstance(_guess, str):
kw["filename"] = _guess
elif isinstance(_guess, file):
kw["file"] = _guess
if "filename" in kw:
self.file = file(kw["filename"], "rb")
elif "file" in kw:
self.file = kw["file"]
elif "pixels" in kw:
self.file = _readable(kw["pixels"])
else:
raise TypeError("expecting filename, file or pixels array")
def read_chunk(self):
"""
Read a PNG chunk from the input file, return tag name and data.
"""
# http://www.w3.org/TR/PNG/#5Chunk-layout
try:
data_bytes, tag = struct.unpack('!I4s', self.file.read(8))
except struct.error:
raise ValueError('Chunk too short for header')
data = self.file.read(data_bytes)
if len(data) != data_bytes:
raise ValueError('Chunk %s too short for required %i data octets'
% (tag, data_bytes))
checksum = self.file.read(4)
if len(checksum) != 4:
raise ValueError('Chunk %s too short for checksum', tag)
verify = zlib.crc32(tag)
verify = zlib.crc32(data, verify)
verify = struct.pack('!i', verify)
if checksum != verify:
# print repr(checksum)
(a, ) = struct.unpack('!I', checksum)
(b, ) = struct.unpack('!I', verify)
raise ValueError("Checksum error in %s chunk: 0x%X != 0x%X"
% (tag, a, b))
return tag, data
def _reconstruct_sub(self, offset, xstep, ystep):
"""
Reverse sub filter.
"""
pixels = self.pixels
a_offset = offset
offset += self.psize * xstep
if xstep == 1:
for index in range(self.psize, self.row_bytes):
x = pixels[offset]
a = pixels[a_offset]
pixels[offset] = (x + a) & 0xff
offset += 1
a_offset += 1
else:
byte_step = self.psize * xstep
for index in range(byte_step, self.row_bytes, byte_step):
for i in range(self.psize):
x = pixels[offset + i]
a = pixels[a_offset + i]
pixels[offset + i] = (x + a) & 0xff
offset += self.psize * xstep
a_offset += self.psize * xstep
def _reconstruct_up(self, offset, xstep, ystep):
"""
Reverse up filter.
"""
pixels = self.pixels
b_offset = offset - (self.row_bytes * ystep)
if xstep == 1:
for index in range(self.row_bytes):
x = pixels[offset]
b = pixels[b_offset]
pixels[offset] = (x + b) & 0xff
offset += 1
b_offset += 1
else:
for index in range(0, self.row_bytes, xstep * self.psize):
for i in range(self.psize):
x = pixels[offset + i]
b = pixels[b_offset + i]
pixels[offset + i] = (x + b) & 0xff
offset += self.psize * xstep
b_offset += self.psize * xstep
def _reconstruct_average(self, offset, xstep, ystep):
"""
Reverse average filter.
"""
pixels = self.pixels
a_offset = offset - (self.psize * xstep)
b_offset = offset - (self.row_bytes * ystep)
if xstep == 1:
for index in range(self.row_bytes):
x = pixels[offset]
if index < self.psize:
a = 0
else:
a = pixels[a_offset]
if b_offset < 0:
b = 0
else:
b = pixels[b_offset]
pixels[offset] = (x + ((a + b) >> 1)) & 0xff
offset += 1
a_offset += 1
b_offset += 1
else:
for index in range(0, self.row_bytes, self.psize * xstep):
for i in range(self.psize):
x = pixels[offset+i]
if index < self.psize:
a = 0
else:
a = pixels[a_offset + i]
if b_offset < 0:
b = 0
else:
b = pixels[b_offset + i]
pixels[offset + i] = (x + ((a + b) >> 1)) & 0xff
offset += self.psize * xstep
a_offset += self.psize * xstep
b_offset += self.psize * xstep
def _reconstruct_paeth(self, offset, xstep, ystep):
"""
Reverse Paeth filter.
"""
pixels = self.pixels
a_offset = offset - (self.psize * xstep)
b_offset = offset - (self.row_bytes * ystep)
c_offset = b_offset - (self.psize * xstep)
# There's enough inside this loop that it's probably not worth
# optimising for xstep == 1
for index in range(0, self.row_bytes, self.psize * xstep):
for i in range(self.psize):
x = pixels[offset+i]
if index < self.psize:
a = c = 0
b = pixels[b_offset+i]
else:
a = pixels[a_offset+i]
b = pixels[b_offset+i]
c = pixels[c_offset+i]
p = a + b - c
pa = abs(p - a)
pb = abs(p - b)
pc = abs(p - c)
if pa <= pb and pa <= pc:
pr = a
elif pb <= pc:
pr = b
else:
pr = c
pixels[offset+i] = (x + pr) & 0xff
offset += self.psize * xstep
a_offset += self.psize * xstep
b_offset += self.psize * xstep
c_offset += self.psize * xstep
# N.B. PNG files with 'up', 'average' or 'paeth' filters on the
# first line of a pass are legal. The code above for 'average'
# deals with this case explicitly. For up we map to the null
# filter and for paeth we map to the sub filter.
def reconstruct_line(self, filter_type, first_line, offset, xstep, ystep):
"""
Reverse the filtering for a scanline.
"""
# print >> sys.stderr, "Filter type %s, first_line=%s" % (
# filter_type, first_line)
filter_type += (first_line << 8)
if filter_type == 1 or filter_type == 0x101 or filter_type == 0x104:
self._reconstruct_sub(offset, xstep, ystep)
elif filter_type == 2:
self._reconstruct_up(offset, xstep, ystep)
elif filter_type == 3 or filter_type == 0x103:
self._reconstruct_average(offset, xstep, ystep)
elif filter_type == 4:
self._reconstruct_paeth(offset, xstep, ystep)
return
def deinterlace(self, scanlines):
"""
Read pixel data and remove interlacing.
"""
# print >> sys.stderr, ("Reading interlaced, w=%s, r=%s, planes=%s," +
# " bpp=%s") % (self.width, self.height, self.planes, self.bps)
a = array('B')
self.pixels = a
# Make the array big enough
temp = scanlines[0:self.width*self.height*self.psize]
a.extend(temp)
source_offset = 0
for xstart, ystart, xstep, ystep in _adam7:
# print >> sys.stderr, "Adam7: start=%s,%s step=%s,%s" % (
# xstart, ystart, xstep, ystep)
filter_first_line = 1
for y in range(ystart, self.height, ystep):
if xstart >= self.width:
continue
filter_type = scanlines[source_offset]
source_offset += 1
if xstep == 1:
offset = y * self.row_bytes
a[offset:offset+self.row_bytes] = \
scanlines[source_offset:source_offset + self.row_bytes]
source_offset += self.row_bytes
else:
# Note we want the ceiling of (width - xstart) / xtep
row_len = self.psize * (
(self.width - xstart + xstep - 1) / xstep)
offset = y * self.row_bytes + xstart * self.psize
end_offset = (y+1) * self.row_bytes
skip = self.psize * xstep
for i in range(self.psize):
a[offset+i:end_offset:skip] = \
scanlines[source_offset + i:
source_offset + row_len:
self.psize]
source_offset += row_len
if filter_type:
self.reconstruct_line(filter_type, filter_first_line,
offset, xstep, ystep)
filter_first_line = 0
return a
def read_flat(self, scanlines):
"""
Read pixel data without de-interlacing.
"""
a = array('B')
self.pixels = a
offset = 0
source_offset = 0
filter_first_line = 1
for y in range(self.height):
filter_type = scanlines[source_offset]
source_offset += 1
a.extend(scanlines[source_offset: source_offset + self.row_bytes])
if filter_type:
self.reconstruct_line(filter_type, filter_first_line,
offset, 1, 1)
filter_first_line = 0
offset += self.row_bytes
source_offset += self.row_bytes
return a
def read(self):
"""
Read a simple PNG file, return width, height, pixels and image metadata
This function is a very early prototype with limited flexibility
and excessive use of memory.
"""
signature = self.file.read(8)
if (signature != struct.pack("8B", 137, 80, 78, 71, 13, 10, 26, 10)):
raise Error("PNG file has invalid header")
compressed = []
image_metadata = {}
while True:
try:
tag, data = self.read_chunk()
except ValueError, e:
raise Error('Chunk error: ' + e.args[0])
# print >> sys.stderr, tag, len(data)
if tag == 'IHDR': # http://www.w3.org/TR/PNG/#11IHDR
(width, height, bits_per_sample, color_type,
compression_method, filter_method,
interlaced) = struct.unpack("!2I5B", data)
bps = bits_per_sample / 8
if bps == 0:
raise Error("unsupported pixel depth")
if bps > 2 or bits_per_sample != (bps * 8):
raise Error("invalid pixel depth")
if color_type == 0:
greyscale = True
has_alpha = False
planes = 1
elif color_type == 2:
greyscale = False
has_alpha = False
planes = 3
elif color_type == 4:
greyscale = True
has_alpha = True
planes = 2
elif color_type == 6:
greyscale = False
has_alpha = True
planes = 4
else:
raise Error("unknown PNG colour type %s" % color_type)
if compression_method != 0:
raise Error("unknown compression method")
if filter_method != 0:
raise Error("unknown filter method")
self.bps = bps
self.planes = planes
self.psize = bps * planes
self.width = width
self.height = height
self.row_bytes = width * self.psize
elif tag == 'IDAT': # http://www.w3.org/TR/PNG/#11IDAT
compressed.append(data)
elif tag == 'bKGD':
if greyscale:
image_metadata["background"] = struct.unpack("!1H", data)
else:
image_metadata["background"] = struct.unpack("!3H", data)
elif tag == 'tRNS':
if greyscale:
image_metadata["transparent"] = struct.unpack("!1H", data)
else:
image_metadata["transparent"] = struct.unpack("!3H", data)
elif tag == 'gAMA':
image_metadata["gamma"] = (
struct.unpack("!L", data)[0]) / 100000.0
elif tag == 'IEND': # http://www.w3.org/TR/PNG/#11IEND
break
scanlines = array('B', zlib.decompress(''.join(compressed)))
if interlaced:
pixels = self.deinterlace(scanlines)
else:
pixels = self.read_flat(scanlines)
image_metadata["greyscale"] = greyscale
image_metadata["has_alpha"] = has_alpha
image_metadata["bytes_per_sample"] = bps
image_metadata["interlaced"] = interlaced
return width, height, pixels, image_metadata
def test_suite(options):
"""
Run regression test and write PNG file to stdout.
"""
# Below is a big stack of test image generators
def test_gradient_horizontal_lr(x, y):
return x
def test_gradient_horizontal_rl(x, y):
return 1-x
def test_gradient_vertical_tb(x, y):
return y
def test_gradient_vertical_bt(x, y):
return 1-y
def test_radial_tl(x, y):
return max(1-math.sqrt(x*x+y*y), 0.0)
def test_radial_center(x, y):
return test_radial_tl(x-0.5, y-0.5)
def test_radial_tr(x, y):
return test_radial_tl(1-x, y)
def test_radial_bl(x, y):
return test_radial_tl(x, 1-y)
def test_radial_br(x, y):
return test_radial_tl(1-x, 1-y)
def test_stripe(x, n):
return 1.0*(int(x*n) & 1)
def test_stripe_h_2(x, y):
return test_stripe(x, 2)
def test_stripe_h_4(x, y):
return test_stripe(x, 4)
def test_stripe_h_10(x, y):
return test_stripe(x, 10)
def test_stripe_v_2(x, y):
return test_stripe(y, 2)
def test_stripe_v_4(x, y):
return test_stripe(y, 4)
def test_stripe_v_10(x, y):
return test_stripe(y, 10)
def test_stripe_lr_10(x, y):
return test_stripe(x+y, 10)
def test_stripe_rl_10(x, y):
return test_stripe(x-y, 10)
def test_checker(x, y, n):
return 1.0*((int(x*n) & 1) ^ (int(y*n) & 1))
def test_checker_8(x, y):
return test_checker(x, y, 8)
def test_checker_15(x, y):
return test_checker(x, y, 15)
def test_zero(x, y):
return 0
def test_one(x, y):
return 1
test_patterns = {
"GLR": test_gradient_horizontal_lr,
"GRL": test_gradient_horizontal_rl,
"GTB": test_gradient_vertical_tb,
"GBT": test_gradient_vertical_bt,
"RTL": test_radial_tl,
"RTR": test_radial_tr,
"RBL": test_radial_bl,
"RBR": test_radial_br,
"RCTR": test_radial_center,
"HS2": test_stripe_h_2,
"HS4": test_stripe_h_4,
"HS10": test_stripe_h_10,
"VS2": test_stripe_v_2,
"VS4": test_stripe_v_4,
"VS10": test_stripe_v_10,
"LRS": test_stripe_lr_10,
"RLS": test_stripe_rl_10,
"CK8": test_checker_8,
"CK15": test_checker_15,
"ZERO": test_zero,
"ONE": test_one,
}
def test_pattern(width, height, depth, pattern):
"""
Create a single plane (monochrome) test pattern.
"""
a = array('B')
fw = float(width)
fh = float(height)
pfun = test_patterns[pattern]
if depth == 1:
for y in range(height):
for x in range(width):
a.append(int(pfun(float(x)/fw, float(y)/fh) * 255))
elif depth == 2:
for y in range(height):
for x in range(width):
v = int(pfun(float(x)/fw, float(y)/fh) * 65535)
a.append(v >> 8)
a.append(v & 0xff)
return a
def test_rgba(size=256, depth=1,
red="GTB", green="GLR", blue="RTL", alpha=None):
"""
Create a test image.
"""
r = test_pattern(size, size, depth, red)
g = test_pattern(size, size, depth, green)
b = test_pattern(size, size, depth, blue)
if alpha:
a = test_pattern(size, size, depth, alpha)
i = interleave_planes(r, g, depth, depth)
i = interleave_planes(i, b, 2 * depth, depth)
if alpha:
i = interleave_planes(i, a, 3 * depth, depth)
return i
# The body of test_suite()
size = 256
if options.test_size:
size = options.test_size
depth = 1
if options.test_deep:
depth = 2
kwargs = {}
if options.test_red:
kwargs["red"] = options.test_red
if options.test_green:
kwargs["green"] = options.test_green
if options.test_blue:
kwargs["blue"] = options.test_blue
if options.test_alpha:
kwargs["alpha"] = options.test_alpha
pixels = test_rgba(size, depth, **kwargs)
writer = Writer(size, size,
bytes_per_sample=depth,
transparent=options.transparent,
background=options.background,
gamma=options.gamma,
has_alpha=options.test_alpha,
compression=options.compression,
interlaced=options.interlace)
writer.write_array(sys.stdout, pixels)
def read_pnm_header(infile, supported='P6'):
"""
Read a PNM header, return width and height of the image in pixels.
"""
header = []
while len(header) < 4:
line = infile.readline()
sharp = line.find('#')
if sharp > -1:
line = line[:sharp]
header.extend(line.split())
if len(header) == 3 and header[0] == 'P4':
break # PBM doesn't have maxval
if header[0] not in supported:
raise NotImplementedError('file format %s not supported' % header[0])
if header[0] != 'P4' and header[3] != '255':
raise NotImplementedError('maxval %s not supported' % header[3])
return int(header[1]), int(header[2])
def color_triple(color):
"""
Convert a command line color value to a RGB triple of integers.
FIXME: Somewhere we need support for greyscale backgrounds etc.
"""
if color.startswith('#') and len(color) == 4:
return (int(color[1], 16),
int(color[2], 16),
int(color[3], 16))
if color.startswith('#') and len(color) == 7:
return (int(color[1:3], 16),
int(color[3:5], 16),
int(color[5:7], 16))
elif color.startswith('#') and len(color) == 13:
return (int(color[1:5], 16),
int(color[5:9], 16),
int(color[9:13], 16))
def _main():
"""
Run the PNG encoder with options from the command line.
"""
# Parse command line arguments
from optparse import OptionParser
version = '%prog ' + __revision__.strip('$').replace('Rev: ', 'r')
parser = OptionParser(version=version)
parser.set_usage("%prog [options] [pnmfile]")
parser.add_option("-i", "--interlace",
default=False, action="store_true",
help="create an interlaced PNG file (Adam7)")
parser.add_option("-t", "--transparent",
action="store", type="string", metavar="color",
help="mark the specified color as transparent")
parser.add_option("-b", "--background",
action="store", type="string", metavar="color",
help="save the specified background color")
parser.add_option("-a", "--alpha",
action="store", type="string", metavar="pgmfile",
help="alpha channel transparency (RGBA)")