forked from rohitmodee/MolOpt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
policy.py
66 lines (54 loc) · 2.37 KB
/
policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.nn.functional as F
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.utils.annotations import override
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC
from ray.rllib.models.torch.misc import SlimFC
import pdb
class PolicyNetwork(TorchModelV2, nn.Module):
"""Example of a PyTorch custom model that just delegates to a fc-net."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
self.mlp_f = nn.Sequential(
nn.Linear(5+3, 128),
nn.Linear(128, 128),
nn.Tanh(),
nn.Linear(128, 128),
nn.Tanh(),
nn.Linear(128, 128),
)
self.mlp_aev = nn.Sequential(
nn.Linear(128+5+3, 128),
nn.Linear(128, 128),
nn.LeakyReLU(),
nn.Linear(128, 128),
nn.LeakyReLU(),
)
self.mlp_interaction = nn.Sequential(
nn.Linear(128, 128),
nn.Tanh(),
nn.Linear(128, 128),
nn.Tanh(),
nn.Linear(128, self.num_outputs),
)
self.values = nn.Sequential(
nn.Linear(128+5+3, 128),
nn.Linear(128, 128),
nn.Tanh(),
nn.Linear(128, 1),
)
self._last_value = None
def forward(self, input_dict, state, seq_lens):
features = input_dict["obs"]
force_feature = self.mlp_f(features[:,-8:])
out = self.mlp_aev(features) + force_feature
final_out = self.mlp_interaction(out)
self._last_value = self.values(features)
return final_out , []
def value_function(self):
return torch.squeeze(self._last_value, -1)