-
Notifications
You must be signed in to change notification settings - Fork 145
/
2020_09_01_crop_yields.Rmd
174 lines (145 loc) · 4.34 KB
/
2020_09_01_crop_yields.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
title: "TidyTemplate"
date: 2020-09-01
output: html_output
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(tidytuesdayR)
library(scales)
library(janitor)
theme_set(theme_light())
```
# Load the weekly Data
Dowload the weekly data and make available in the `tt` object.
```{r Load}
tt <- tt_load("2020-09-01")
```
```{r}
tt$key_crop_yields %>%
View()
yields <- tt$key_crop_yields %>%
clean_names() %>%
rename_all(str_remove, "_tonnes.*")
arable_land <- tt$arable_land_pin %>%
clean_names() %>%
rename(arable_land_needed = 4)
arable_land %>%
filter(entity == "Afghanistan") %>%
ggplot(aes(year, arable_land_needed)) +
geom_line()
fertilizer <- tt$cereal_crop_yield_vs_fertilizer_application %>%
janitor::clean_names() %>%
rename(yield = 4,
fertilizer_use = 5)
```
```{r}
yields_tidy <- yields %>%
pivot_longer(wheat:bananas, names_to = "crop", values_to = "yield") %>%
filter(!is.na(yield)) %>%
mutate(crop = str_replace_all(crop, "_", " "),
crop = str_to_title(crop))
yields_tidy %>%
write_rds("crop-yields-shiny/yields_tidy.rds")
```
```{r}
yields_tidy %>%
filter(code == "USA") %>%
mutate(crop = fct_reorder(crop, -yield)) %>%
ggplot(aes(year, yield)) +
geom_line() +
facet_wrap(~ crop)
yields_tidy %>%
filter(code == "USA") %>%
mutate(crop = fct_reorder(crop, -yield)) %>%
ggplot(aes(year, yield, color = crop)) +
geom_line() +
labs(x = "Year",
y = "Yield (tonnes per hectare)",
title = "Crop yields in the US over time",
color = "Crop")
yields_tidy %>%
filter(entity == "India") %>%
mutate(crop = fct_reorder(crop, -yield)) %>%
ggplot(aes(year, yield, color = crop)) +
geom_line() +
labs(x = "Year",
y = "Yield (tonnes per hectare)",
title = "Crop yields in the US over time",
color = "Crop")
```
```{r}
yields_tidy %>%
filter(crop == "Wheat") %>%
add_count(entity) %>%
filter(n == max(n)) %>%
filter(entity %in% sample(unique(entity), 25)) %>%
ggplot(aes(year, yield)) +
geom_line() +
facet_wrap(~ entity)
crop_yields_50_years <- yields_tidy %>%
arrange(entity, year) %>%
filter(year >= 1968) %>%
group_by(entity, code, crop) %>%
summarize(year_start = min(year),
year_end = max(year),
yield_start = first(yield),
yield_end = last(yield)) %>%
ungroup() %>%
filter(year_start == 1968) %>%
mutate(yield_ratio = yield_end / yield_start)
crop_yields_50_years %>%
filter(!is.na(code)) %>%
ggplot(aes(yield_start, yield_end)) +
geom_abline(color = "red") +
geom_point() +
facet_wrap(~ crop, scales = "free")
crop_yields_50_years %>%
mutate(crop = fct_reorder(crop, yield_ratio)) %>%
ggplot(aes(yield_ratio, crop)) +
geom_boxplot() +
scale_x_log10()
crop_yields_50_years %>%
group_by(crop) %>%
summarize(median_yield_ratio = median(yield_ratio)) %>%
mutate(crop = fct_reorder(crop, median_yield_ratio)) %>%
ggplot(aes(median_yield_ratio, crop)) +
geom_col() +
labs(title = "How much has the average country improved at producing this crop?",
x = "(2018 yield) / (1968 yield)",
y = "")
crop_yields_50_years %>%
filter(is.na(code)) %>%
filter(entity %in% c("Africa", "Asia", "Northern America", "South America", "Oceania")) %>%
ggplot(aes(yield_start, yield_end, color = entity)) +
geom_abline(color = "red") +
geom_point() +
expand_limits(y = 0, x = 0) +
facet_wrap(~ crop, scales = "free") +
labs(x = "Tonnes per hectare in 1968",
y = "Tonnes per hectare in 2018",
color = "Continent")
```
```{r}
library(ggrepel)
library(countrycode)
crop_yields_50_years %>%
filter(crop == "Wheat",
!is.na(code)) %>%
mutate(continent = countrycode(code, "iso3c", "continent")) %>%
filter(!is.na(continent)) %>%
ggplot(aes(yield_start, yield_ratio)) +
geom_point(aes(color = continent)) +
scale_x_log10() +
scale_y_log10(breaks = c(.25, .5, 1, 2, 4),
labels = c("1/4X", "1/2X", "Same", "2X", "4X")) +
geom_hline(yintercept = 1, linetype = "dotted") +
geom_text_repel(aes(label = entity), force = .1,
size = 2.5) +
labs(x = "1968 yield (tonnes per hectare), log scale",
y = "(2018 yield) / (1968 yield), log scale",
color = "Continent",
title = "How has wheat efficiency changed across countries?")
countrycode("USA", "iso3c", "continent")
```