-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathget_predict_csv.py
69 lines (67 loc) · 2.08 KB
/
get_predict_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import os
import numpy as np
import csv
if __name__=='__main__':
csv_path='./intermediate_file'
#detection result
ori_label_csv_fn='/detect_result/csv/unpadding_detect_result.csv'
#recognize result
single_csv_fn='/recognize_result/result.csv'
#build dict
single_dict={}
with open(csv_path+single_csv_fn,'r') as f:
reader_single=csv.reader(f)
dict_key=next(reader_single)
for row in reader_single:
# print row
key,_=row[0].split('.')
single_dict[key]=row[1]
#print(len(list(single_dict.values())))
keys_list=list(single_dict.keys())
# keys_list=sorted(keys_list)
# print 'keys_list',keys_list
img_fn_set=set()
i=1
# for k in keys_list:
# print k
best_csv_fn='/final_result/predict.csv'
writer_file=open(csv_path+best_csv_fn, "w")
writer=csv.writer(writer_file,lineterminator='\n')
with open(csv_path+ori_label_csv_fn,'r') as f_ori:
reader_ori=csv.reader(f_ori)
#if detection have file head
dict_key_ori=next(reader_ori)
dict_key_ori.append('text')
writer.writerow(dict_key_ori)
#
for row in reader_ori:
img_fn=row[0]
# print 'img_fn',img_fn
x1=int(row[1])
y1=int(row[2])
x2=int(row[3])
y2=int(row[4])
x3=int(row[5])
y3=int(row[6])
x4=int(row[7])
y4=int(row[8])
# if no label
# label=row[9]
label=''
if not img_fn in img_fn_set:
# print 'here'
i=1
img_fn_set.add(img_fn)
else:
i+=1
key_cur=img_fn.split('.')[0]+'_{}'.format(i)
# print key_cur,type(key_cur)
if key_cur in keys_list:
# print 'here'
label=single_dict[key_cur]
# print 'label',label
row_list=[img_fn,x1,y1,x2,y2,x3,y3,x4,y4,label]
writer.writerow(row_list)
writer_file.close()
print 'finish!'