forked from VinzenzBildstein/CommandLineInterface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUncertainty.hh
116 lines (104 loc) · 3.21 KB
/
Uncertainty.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#ifndef UNCERTAINTY_HH
#define UNCERTAINTY_HH
#include <iostream>
#include <iomanip>
template <class T>
class Uncertainty
{
public:
Uncertainty(T, T, Format);
~Uncertainty();
SetFormat(Format format)
{
fFormat = format;
}
friend ostream& operator <<(ostream &,const Uncertainty<T> &);
protected:
enum Format
{
PlusMinus,
Brackets
};
T fExactValue;
T fExactUncertainty;
T fRoundedValue;
T fRoundedUncertainty;
Format fFormat;
int fFixedPrecision;
int fScientificValuePrecision;
int fScientificUncertaintyPrecision;
};
//format of the error should be:
//if the first digit is a one => precision of two
//otherwise => precision of one
//and errors should always be rounded up
// fixed scientific (always only one digit before the period)
//error < 20 simply set precision to abs(floor(log(error))) (+1 if first digit is one) precision of error is always 0 or 1 (if first digit is 1)
//error >= 2 report all digits up to the dot (precision 0), with everything rounded accordingly precision of value is the same plus floor(log(value)) - floor(log(error))
//
//first digit can be found by dividing the error by 10^(floor of the log(error)) and taking the floor of the result
template <class T>
Uncertainty::Uncertainty(T value, T uncertainty, Format format = PlusMinus)
: fExactValue(value), fExactUncertainty(uncertainty), fFormat(format)
{
int firstDigit = (int) fExactUncertainty/pow(10.,floor(log10(fExactUncertainty)));
if(fExactUncertainty < (T) 20.)
{
fFixedPrecision = abs(floor(log10(fExactUncertainty)));
if(firstDigit == 1)
{
fFixedPrecision++;
}
}
else
{
fFixedPrecision = 0;
}
fScientificUncertaintyPrecision = 0;
if(firstDigit == 1)
{
fScientificUncertaintyPrecision++;
}
fScientificValuePrecision = fScientificUncertaintyPrecision;
fScientificValuePrecision += floor(log10(fExactValue)) - floor(log10(fExactUncertainty));
//if the error is equal to 10^(floor of log(error)) we need no rounding
//otherwise the error should always be rounded up, so we set the error to (firstDigit plus one)*10^(floor of the log(error))
if(fExactUncertainty == firstDigit*pow(10.,floor(log10(fExactUncertainty))))
{
fRoundedUncertainty = fExactUncertainty;
}
else
{
fRoundedUncertainty = ;
}
}
template <class T>
ostream& operator <<(ostream &os, const Uncertainty<T> &obj)
{
//fixed output format was set
if((cout.flags() & ios_base::fixed) == ios_base::fixed)
{
os<<setprecision(fFixedPrecision);
if(fFormat == PlusMinus)
{
os<<tmpValue<<" +- "<<tmpUncertainty;
}
else if(fFormat == Brackets)
{
os<<tmpValue<<"("<<tmpUncertainty<<")";
}
}
else if((cout.flags() & ios_base::scientific) == ios_base::scientific)
{
if(fFormat == PlusMinus)
{
os<<setprecision(fScientificValuePrecision)<<tmpValue<<" +- "<<setprecision(fScientificUncertaintyPrecision)<<tmpUncertainty;
}
else if(fFormat == Brackets)
{
os<<setprecision(fScientificValuePrecision)<<tmpValue<<"("<<setprecision(fScientificUncertaintyPrecision)<<tmpUncertainty<<")";
}
}
return os;
}
#endif