forked from locuslab/wanda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
103 lines (83 loc) · 2.99 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
from timm.data import create_transform
from timm.data.constants import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
IMAGENET_INCEPTION_MEAN,
IMAGENET_INCEPTION_STD,
)
from torchvision import datasets, transforms
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set == "CIFAR":
dataset = datasets.CIFAR100(
args.data_path, train=is_train, transform=transform, download=True
)
nb_classes = 100
elif args.data_set == "IMNET":
root = os.path.join(args.data_path, "train" if is_train else "val")
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == "image_folder":
root = args.data_path if is_train else args.eval_data_path
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = args.nb_classes
assert len(dataset.class_to_idx) == nb_classes
else:
raise NotImplementedError()
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
mean = (
IMAGENET_INCEPTION_MEAN
if not imagenet_default_mean_and_std
else IMAGENET_DEFAULT_MEAN
)
std = (
IMAGENET_INCEPTION_STD
if not imagenet_default_mean_and_std
else IMAGENET_DEFAULT_STD
)
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
mean=mean,
std=std,
)
if not resize_im:
transform.transforms[0] = transforms.RandomCrop(args.input_size, padding=4)
return transform
t = []
if resize_im:
# warping (no cropping) when evaluated at 384 or larger
if args.input_size >= 384:
t.append(
transforms.Resize(
(args.input_size, args.input_size),
interpolation=transforms.InterpolationMode.BICUBIC,
),
)
print(f"Warping {args.input_size} size input images...")
else:
if args.crop_pct is None:
args.crop_pct = 224 / 256
size = int(args.input_size / args.crop_pct)
t.append(
# to maintain same ratio w.r.t. 224 images
transforms.Resize(
size, interpolation=transforms.InterpolationMode.BICUBIC
),
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(mean, std))
return transforms.Compose(t)