-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
233 lines (209 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 18:05:52 2020
"""
import os # to communicate with operation system
import os.path as path
import torch
from torch import optim
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from model import GATES
from utils import tensor_from_data, tensor_from_weight, _eval_Fmeasure, accuracy
from data_loader import get_data_gold
import math
import time
import psutil
def asHours(s):
m = math.floor(s / 60)
h = math.floor(m / 60)
s -= m * 60
m -= h * 60
return '%dh %dm %ds' % (h, m, s)
def mem():
mem = psutil.cpu_percent()
print('Current mem usage:')
print(mem)
return "Current mem usage: %s \n" % (mem)
def train_iter(ds_name, train_adjs, train_facts, train_labels, val_adjs, val_facts, val_labels, reg, n_epoch, save_every, device, entity_dict, \
pred_dict, loss_function, pred2ix_size, hidden_size, pred_emb_dim, ent_emb_dim, lr, dropout, entity2ix_size, hidden_layers, nheads, \
word_emb, db_dir, weight_decay, word_emb_calc, topk, file_n, concat_model, print_to, weighted_edges_method):
if reg == True:
print("use regularization in training")
#best_epoch_list=[]
if not path.exists("models"):
os.makedirs("models")
times = []
start = time.time()
print("Current memory", mem())
valid_epoch_list = []
arEpochs = []
losses = {'Training set':[], 'Validation set': []}
weighted_adjacency_matrix=False
if weighted_edges_method=="tf-idf":
weighted_adjacency_matrix = True
for i in range(5):
arEpochs.append(i)
gates = GATES(pred2ix_size, entity2ix_size, pred_emb_dim, ent_emb_dim, device, dropout, hidden_layers, nheads, weighted_adjacency_matrix)
gates.to(device)
if reg:
optimizer = optim.Adam(gates.parameters(), lr=lr, weight_decay=weight_decay)
else:
optimizer = optim.Adam(gates.parameters(), lr=lr)
directory = os.path.join(os.getcwd(), path.join("models", "gates_checkpoint-{}-{}-{}".format(ds_name, topk, i)))
print("Training GATES model on Fold {} on top {} of {} dataset".format(i+1, topk, ds_name))
total_loss, total_val_loss, total_accuracy, valid_epoch, _, _ = train(gates, ds_name, train_adjs[i], train_facts[i], train_labels[i], \
val_adjs[i], val_facts[i], val_labels[i], loss_function, optimizer, n_epoch, save_every, device, entity_dict, pred_dict, reg, \
directory, word_emb_calc, i, word_emb, db_dir, topk, file_n, concat_model, print_to, weighted_edges_method)
valid_epoch_list.append(valid_epoch)
now = time.time()
print("Iter: {} \n Time {} \n Time(second) {} \n Memeory usage: {} \n Average training loss: {} \n Average validation loss: {} \n Average accuracy {}".format(i, asHours(now-start), now-start, mem(), total_loss, total_val_loss, total_accuracy))
times.append((time.time()-start)/60)
losses['Training set'].append(total_loss)
losses['Validation set'].append(total_val_loss)
showPlot(arEpochs, losses, "gates_{}_{}".format(ds_name, topk), "Average training vs validation loss")
with open(print_to, 'a') as f:
f.write("Times: {}\n".format((time.time()-start)/60))
f.write("Iteration: {}\n".format(i))
f.write("Average training loss: {}\n".format(total_loss))
f.write("Average validation loss: {}\n".format(total_val_loss))
f.write("\n")
return valid_epoch_list
# Define training model
def train(gates, ds_name, adj, edesc, label, val_adj, val_edesc, val_label, \
loss_function, optimizer, n_epoch, save_every, device, entity_dict, pred_dict, reg, directory, word_emb_calc, fold, word_emb, db_dir, topk, file_n, concat_model, print_to, weighted_edges_method):
if not path.exists(directory):
os.makedirs(directory)
avg_train_loss=[]
avg_valid_loss = []
total_accuracy = []
train_accuracy = []
stop_valid_epoch = None
stop_valid_loss = None
stop_train_loss = None
arEpochs = []
losses = {'Training set':[], 'Validation set': []}
acc_graph = {'Training Accuracy':[], 'Validation Accuracy': []}
best_acc = 0
total_steps = len(edesc) * n_epoch
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
for epoch in range(n_epoch):
gates.train()
arEpochs.append(epoch)
train_loss = 0
train_acc_list =[]
for i in range(len(edesc)):
# zero the parameter gradients
optimizer.zero_grad()
eid = edesc[i][0][0]
pred_tensor, obj_tensor = tensor_from_data(concat_model, entity_dict, pred_dict, edesc[i], word_emb, word_emb_calc)
input_tensor = [pred_tensor.to(device), obj_tensor.to(device)]
target_tensor = tensor_from_weight(len(edesc[i]), edesc[i], label[i]).to(device)
output_tensor = gates(input_tensor, adj[i])
loss = loss_function(output_tensor.view(-1), target_tensor.view(-1)).to(device)
train_output_tensor = output_tensor.view(1, -1).cpu()
train_target_tensor = target_tensor.view(1, -1).cpu()
(label_top_scores, label_top) = torch.topk(train_target_tensor, topk)
(output_top_scores, output_top) = torch.topk(train_output_tensor, topk)
gold_list_top = get_data_gold(db_dir, eid, topk, file_n)
acc = accuracy(output_top.squeeze(0).numpy().tolist(), gold_list_top)
train_acc_list.append(acc)
loss.backward()
#torch.nn.utils.clip_grad_norm_(gates.parameters(), 5)
optimizer.step()
scheduler.step()
train_loss += loss.item()
avg_train_acc = np.mean(train_acc_list)
train_accuracy.append(avg_train_acc)
gates.eval()
valid_loss = 0
acc_list = []
with torch.no_grad():
for i in range(len(val_edesc)):
eid = val_edesc[i][0][0]
val_pred_tensor, val_obj_tensor = tensor_from_data(concat_model, entity_dict, pred_dict, val_edesc[i], word_emb, word_emb_calc)
val_input_tensor = [val_pred_tensor.to(device), val_obj_tensor.to(device)]
val_target_tensor = tensor_from_weight(len(val_edesc[i]), val_edesc[i], val_label[i]).to(device)
val_output_tensor = gates(val_input_tensor, val_adj[i])
v_loss = loss_function(val_output_tensor.view(-1), val_target_tensor.view(-1)).to(device)
val_output_tensor = val_output_tensor.view(1, -1).cpu()
val_target_tensor = val_target_tensor.view(1, -1).cpu()
(label_top_scores, label_top) = torch.topk(val_target_tensor, topk)
(output_top_scores, output_top) = torch.topk(val_output_tensor, topk)
gold_list_top = get_data_gold(db_dir, eid, topk, file_n)
acc = accuracy(output_top.squeeze(0).numpy().tolist(), gold_list_top)
acc_list.append(acc)
valid_loss += v_loss.item()
train_loss = train_loss/len(edesc)
avg_train_loss.append(train_loss)
valid_loss = valid_loss/len(val_edesc)
avg_valid_loss.append(valid_loss)
avg_acc = np.mean(acc_list)
total_accuracy.append(avg_acc)
with open(print_to, 'a') as f:
f.write("Epoch: {}\n".format(epoch))
f.write("Training loss: {}\n".format(train_loss))
f.write("Validation loss: {}\n".format(valid_loss))
f.write("Training acc: {}\n".format(avg_train_acc))
f.write("Validation acc: {}\n".format(avg_acc))
f.write("\n")
if epoch % save_every == 0:
'''
if stop_valid_loss == None or valid_loss<stop_valid_loss:
stop_valid_loss = valid_loss
if stop_valid_epoch != None:
if os.path.exists(path.join(directory, "checkpoint_epoch_{}.pt".format(stop_valid_epoch))):
os.remove(path.join(directory, "checkpoint_epoch_{}.pt".format(stop_valid_epoch)))
stop_valid_epoch = epoch
stop_train_loss = train_loss
'''
print("epoch: {}".format(epoch), "training loss", train_loss, "validation loss: {}".format(valid_loss), "accuracy: {}".format(avg_acc))
if avg_acc > best_acc:
with open(print_to, 'a') as f:
f.write("saving best model, val_accuracy improved from {} to {}".format(best_acc, avg_acc))
print("saving best model, val_accuracy improved from {} to {}".format(best_acc, avg_acc))
best_acc = avg_acc
if os.path.exists(path.join(directory, "checkpoint_epoch_{}.pt".format(stop_valid_epoch))):
os.remove(path.join(directory, "checkpoint_epoch_{}.pt".format(stop_valid_epoch)))
stop_valid_epoch = epoch
stop_valid_loss = valid_loss
stop_train_loss = train_loss
torch.save({
"epoch": epoch,
"model_state_dict": gates.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"train_loss": train_loss,
'valid_loss': valid_loss,
'fold': fold,
'acc': avg_acc
}, path.join(directory, "checkpoint_epoch_{}.pt".format(epoch)))
#else:
# break
losses['Training set'].append(train_loss)
losses['Validation set'].append(valid_loss)
acc_graph['Training Accuracy'].append(avg_train_acc)
acc_graph['Validation Accuracy'].append(avg_acc)
showPlot(arEpochs, losses, "gates_{}_{}_fold_{}".format(ds_name, topk, fold), "Training vs validation loss")
showPlot(arEpochs, acc_graph, "acc_gates_{}_{}_fold_{}".format(ds_name, topk, fold), "Training vs validation accuracy")
avg_all_train_loss = sum(avg_train_loss)/len(avg_train_loss)
avg_all_valid_loss = sum(avg_valid_loss)/len(avg_valid_loss)
avg_total_accuracy = sum(total_accuracy)/len(total_accuracy)
return avg_all_train_loss, avg_all_valid_loss, avg_total_accuracy, stop_valid_epoch, stop_train_loss, stop_valid_loss
'''Used to plot the progress of training. Plots the loss value vs. time'''
def showPlot(epochs, losses, fig_name, title):
colors = ('red','blue')
x_axis_label = 'Epochs'
i = 0
for key, losses in losses.items():
if len(losses) > 0:
plt.plot(epochs, losses, label=key, color=colors[i])
i += 1
plt.legend(loc='upper left')
plt.xlabel(x_axis_label)
plt.ylabel('Loss')
plt.title(title)
plt.savefig(fig_name+'.png')
plt.close('all')
'''prints the current memory consumption'''