forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
85 lines (69 loc) · 3.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
################################################################################
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
"""Some common utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
import tensorflow.compat.v1 as tf
import tensorflow_probability as tfp
def generate_gaussian(logits, sigma_nonlin, sigma_param):
"""Generate a Gaussian distribution given a selected parameterisation."""
mu, sigma = tf.split(value=logits, num_or_size_splits=2, axis=1)
if sigma_nonlin == 'exp':
sigma = tf.exp(sigma)
elif sigma_nonlin == 'softplus':
sigma = tf.nn.softplus(sigma)
else:
raise ValueError('Unknown sigma_nonlin {}'.format(sigma_nonlin))
if sigma_param == 'var':
sigma = tf.sqrt(sigma)
elif sigma_param != 'std':
raise ValueError('Unknown sigma_param {}'.format(sigma_param))
return tfp.distributions.Normal(loc=mu, scale=sigma)
def construct_prior_probs(batch_size, n_y, n_y_active):
"""Construct the uniform prior probabilities.
Args:
batch_size: int, the size of the batch.
n_y: int, the number of categorical cluster components.
n_y_active: tf.Variable, the number of components that are currently in use.
Returns:
Tensor representing the prior probability matrix, size of [batch_size, n_y].
"""
probs = tf.ones((batch_size, n_y_active)) / tf.cast(
n_y_active, dtype=tf.float32)
paddings1 = tf.stack([tf.constant(0), tf.constant(0)], axis=0)
paddings2 = tf.stack([tf.constant(0), n_y - n_y_active], axis=0)
paddings = tf.stack([paddings1, paddings2], axis=1)
probs = tf.pad(probs, paddings, constant_values=1e-12)
probs.set_shape((batch_size, n_y))
logging.info('Prior shape: %s', str(probs.shape))
return probs
def maybe_center_crop(layer, target_hw):
"""Center crop the layer to match a target shape."""
l_height, l_width = layer.shape.as_list()[1:3]
t_height, t_width = target_hw
assert t_height <= l_height and t_width <= l_width
if (l_height - t_height) % 2 != 0 or (l_width - t_width) % 2 != 0:
logging.warn(
'It is impossible to center-crop [%d, %d] into [%d, %d].'
' Crop will be uneven.', t_height, t_width, l_height, l_width)
border = int((l_height - t_height) / 2)
x_0, x_1 = border, l_height - border
border = int((l_width - t_width) / 2)
y_0, y_1 = border, l_width - border
layer_cropped = layer[:, x_0:x_1, y_0:y_1, :]
return layer_cropped