@@ -370,7 +370,7 @@ def get_objective_function(self, residuals=None, stretch=None):
370370 function = residual_term + regularization_term + sparsity_term
371371 return function
372372
373- def apply_interpolation_matrix (self , components = None , weights = None , stretch = None ):
373+ def compute_stretched_components (self , components = None , weights = None , stretch = None ):
374374 """
375375 Interpolates each component along its sample axis according to per-(component, signal)
376376 stretch factors, then applies per-(component, signal) weights. Also computes the
@@ -563,7 +563,7 @@ def update_components(self):
563563 Updates `components` using gradient-based optimization with adaptive step size.
564564 """
565565 # Compute stretched components using the interpolation function
566- stretched_components , _ , _ = self .apply_interpolation_matrix () # Discard the derivatives
566+ stretched_components , _ , _ = self .compute_stretched_components () # Discard the derivatives
567567 # Compute reshaped_stretched_components and component_residuals
568568 intermediate_reshaped = stretched_components .flatten (order = "F" ).reshape (
569569 (self .signal_length * self .n_signals , self .n_components ), order = "F"
@@ -651,7 +651,9 @@ def regularize_function(self, stretch=None):
651651 if stretch is None :
652652 stretch = self .stretch_
653653
654- stretched_components , d_stretch_comps , dd_stretch_comps = self .apply_interpolation_matrix (stretch = stretch )
654+ stretched_components , d_stretch_comps , dd_stretch_comps = self .compute_stretched_components (
655+ stretch = stretch
656+ )
655657 intermediate = stretched_components .flatten (order = "F" ).reshape (
656658 (self .signal_length * self .n_signals , self .n_components ), order = "F"
657659 )
@@ -754,8 +756,8 @@ def reconstruct_matrix(components, weights, stretch):
754756 """
755757
756758 signal_len = components .shape [0 ]
757- n_signals = weights .shape [1 ]
758759 n_components = components .shape [1 ]
760+ n_signals = weights .shape [1 ]
759761
760762 reconstructed_matrix = np .zeros ((signal_len , n_signals ))
761763 sample_indices = np .arange (signal_len )
0 commit comments