-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathForBernie.cpp
2816 lines (2501 loc) · 125 KB
/
ForBernie.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "ForBernie.h"
#include "CATStools.h"
#include "DLM_Source.h"
#include "DLM_Potentials.h"
#include "DLM_CkModels.h"
#include "CATS.h"
#include "DLM_CkDecomposition.h"
#include "DLM_Ck.h"
#include "DLM_Fitters.h"
#include "TRandom3.h"
#include "TH2F.h"
#include "TFile.h"
#include "TNtuple.h"
#include "TGraph.h"
#include "TF1.h"
#include "TPaveText.h"
#include "TLegend.h"
#include "TMath.h"
#include "TCanvas.h"
#include "DLM_WfModel.h"
#include "math.h"
//#include "Ugly_mT_Resonance_Source1.h"
//so this one includes kT dependence and resonances, notice that everything is FIXED here, instead of giving huge arrays as input pars.
//[3] = linear parameter of the mT scaling
//[4] = slope parameter of the mT scaling
//[5] = which system we look at, 0,1,2,3 = pp pL pXim LL
//[6] = parameter flag 1 (resonances):
// 0 = the very first values from Vale (19th Sep 2018)
// 1 = the modified values from thermal model (21th Sep 2018)
//[7] = parameter flag 2 (mT binning):
// 0 = the very first values from Andi (19th Sep 2018), pp and pL are both fitted
void UglySource_MB13TeV_1(double* Pars){
enum eSyst { pp, pL, pXim, LL };
const unsigned NumSystems = 4;
double ResMass_p;
double ResMass_L;
double ResMass_Xim;
double ResTau_p;
double ResTau_L;
double ResTau_Xim;
double Prim_p;
double Prim_L;
double Prim_Xim;
const double Mass_p = 938.272;
const double Mass_pi = 138; //kind of avg between pi+ and pi0
const double Mass_L = 1115.683;
const double Mass_Xim = 1321.7;
if(round(Pars[6]==0)){
}
else if(round(Pars[6]==1)){
}
else{
}
unsigned* Num_mT = new unsigned [NumSystems];
double** Mean_mT = new double* [NumSystems];
double** Weight_mT = new double* [NumSystems];
double** Radius_mT = new double* [NumSystems];
double LinearTerm;
double SlopeTerm;
if(round(Pars[7]==0)){
Num_mT[pp] = 4;
Num_mT[pL] = 4;
Num_mT[pXim] = 4;
Num_mT[LL] = 4;
for(unsigned uSyst=0; uSyst<NumSystems; uSyst++){
Mean_mT[uSyst] = new double [Num_mT[uSyst]];
Weight_mT[uSyst] = new double [Num_mT[uSyst]];
Radius_mT[uSyst] = new double [Num_mT[uSyst]];
}
Mean_mT[0][0] = 1047; Weight_mT[0][0] = 0.2902592257;
Mean_mT[0][1] = 1165; Weight_mT[0][1] = 0.3337219832;
Mean_mT[0][2] = 1356; Weight_mT[0][2] = 0.2568598596;
Mean_mT[0][3] = 1850; Weight_mT[0][3] = 0.1191589314;
Mean_mT[1][0] = 1080; Weight_mT[1][0] = 0.0031967451;
Mean_mT[1][1] = 1168; Weight_mT[1][1] = 0.2513975076;
Mean_mT[1][2] = 1363; Weight_mT[1][2] = 0.4929569038;
Mean_mT[1][3] = 1911; Weight_mT[1][3] = 0.2524488435;
Mean_mT[2][0] = 1110; Weight_mT[2][0] = 0;
Mean_mT[2][1] = 1181; Weight_mT[2][1] = 0.0252263126;
Mean_mT[2][2] = 1369; Weight_mT[2][2] = 0.5030778515;
Mean_mT[2][3] = 1966; Weight_mT[2][3] = 0.4716958358;
Mean_mT[3][0] = 1110; Weight_mT[3][0] = 0;
Mean_mT[3][1] = 1193; Weight_mT[3][1] = 0.0015342129;
Mean_mT[3][2] = 1376; Weight_mT[3][2] = 0.4470696533;
Mean_mT[3][3] = 1991; Weight_mT[3][3] = 0.5513961338;
LinearTerm = 1.16320e+00;
SlopeTerm = -2.52473e-04;
}
else{
}
//[system][paricle1/2]
double** ResMass = new double* [NumSystems];
double** ResTau = new double* [NumSystems];
double** PrimFrac = new double* [NumSystems];
double** Mass0 = new double* [NumSystems];
double** Mass1 = new double* [NumSystems];
for(unsigned uSyst=0; uSyst<NumSystems; uSyst++){
ResMass[uSyst] = new double [2];
ResTau[uSyst] = new double [2];
PrimFrac[uSyst] = new double [2];
Mass0[uSyst] = new double [2];
Mass1[uSyst] = new double [2];
}
ResMass[pp][0] = ResMass_p;
ResTau[pp][0] = ResTau_p;
PrimFrac[pp][0] = Prim_p;
Mass0[pp][0] = Mass_p;
Mass1[pp][0] = Mass_pi;
ResMass[pp][1] = ResMass_p;
ResTau[pp][1] = ResTau_p;
PrimFrac[pp][1] = Prim_p;
Mass0[pp][1] = Mass_p;
Mass1[pp][1] = Mass_pi;
ResMass[pL][0] = ResMass_p;
ResTau[pL][0] = ResTau_p;
PrimFrac[pL][0] = Prim_p;
Mass0[pL][0] = Mass_p;
Mass1[pL][0] = Mass_pi;
ResMass[pL][1] = ResMass_L;
ResTau[pL][1] = ResTau_L;
PrimFrac[pL][1] = Prim_L;
Mass0[pL][1] = Mass_L;
Mass1[pL][1] = Mass_pi;
ResMass[pXim][0] = ResMass_p;
ResTau[pXim][0] = ResTau_p;
PrimFrac[pXim][0] = Prim_p;
Mass0[pXim][0] = Mass_p;
Mass1[pXim][0] = Mass_pi;
ResMass[pXim][1] = ResMass_Xim;
ResTau[pXim][1] = ResTau_Xim;
PrimFrac[pXim][1] = Prim_Xim;
Mass0[pXim][1] = Mass_Xim;
Mass1[pXim][1] = Mass_pi;
ResMass[LL][0] = ResMass_L;
ResTau[LL][0] = ResTau_L;
PrimFrac[LL][0] = Prim_L;
Mass0[LL][0] = Mass_L;
Mass1[LL][0] = Mass_pi;
ResMass[LL][1] = ResMass_L;
ResTau[LL][1] = ResTau_L;
PrimFrac[LL][1] = Prim_L;
Mass0[LL][1] = Mass_L;
Mass1[LL][1] = Mass_pi;
const unsigned NumRadBins = 256;
const double rMin = 0;
const double rMax = 8;
//used for the fake random source
const double RelError = 0.000;
const double AbsError = 0.001;
TF1* f_mT_R = new TF1("f_mT_R","[0]+x*[1]",rMin,rMax);
f_mT_R->FixParameter(0,LinearTerm);
f_mT_R->FixParameter(1,SlopeTerm);
for(unsigned uSyst=0; uSyst<NumSystems; uSyst++){
for(unsigned umT=0; umT<Num_mT[uSyst]; umT++){
Radius_mT[uSyst][umT] = f_mT_R->Eval(Mean_mT[uSyst][umT]);
}
}
}
void RUN2_main(const unsigned& NumIter, const unsigned& NumJobs, const unsigned& JobID){
TRandom3 rangen(1+JobID);
//!SETTING THAT YOU MIGHT NEED
//What source to use: 0 = Gauss; 1=Cauchy; 2=DoubleGauss; 3=EPOS; 4=Gauss+Cauchy; 5=MC_GAUSS_OutSideLong; 6=mT scaling + simple resonances
//7=stable, 8=EPOS fitted with a double Gauss; 9=analytic levy; clever levy
//int vSource = rangen.Integer(2); if(vSource==1) vSource=3; //chose Gauss/EPOS at random
int vSource=10;
//(it worked with 1.1,1.75,1.55)
//(it worked with 1.0,1.60,1.40)
const double Stable_Scale = 1.00;
const double pp_Stability = 1.6;//
const double pL_Stability = 1.4;//(for pL)
const double pXim_Stability = 1.9;//
const bool FAST_PLOT = true;
const bool FULL_PLOT = false;
//some bullshit that you might need (and ask me) when using EPOS
const int EPOS_MAX_PAIRS = 64e6/8;
const int EPOS_MIX_DEP = 8;
const bool EPOS_THETA_DEP = false;
const bool TAU_CORR = false;
const double TRANSP_RENORM = 1.5;
//pp13TeV,pPb5TeV
const TString DataPeriod = "pp13TeV";
//const TString DataPeriod = "pPb5TeV";
//0 => the first analysis
//1 => as we did it for the LL paper
//2 => the new event mixing introduced (NOT FINISHED)
const int DataFlag = 2;
//0 initial
//1 papers
const int FitRegion = 1;
//just some temp folder for temp files. Really not important, I will try to get rid of this soon
const TString OutputDir = "/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/GeneralFemtoStuff/Using_CATS3/Output/ForBernie/";
//perform the systematics by using the different cut variations as further permutations, do NOT add the systematic errors in quadrature
//TString SystematicsType = "CutVarIterate";
//perform the systematics by adding the systematics errors of the bin quadratically to the data points
TString SystematicsType = "CutVarAdd";
const bool ExcludeXi = false; //(fit only pp/pL/LL just as in run1)
double PurityProton;
double PurityLambda;
double PurityXi;
double pp_f0;
double pp_f1;
double pL_f0;
double pL_f1;
double pL_f2;
//(single particle quantities)
if(DataPeriod=="pp13TeV"){
//as used initially
if(DataFlag==0){
PurityProton = 0.991213;//991213
PurityLambda = 0.965964;
PurityXi = 0.956;
pp_f0 = 0.874808;
pp_f1 = 0.0876342;//fraction of Lambda
pL_f0 = 0.619493;//fraction of primary Lambdas
pL_f1 = 0.206498;//fraction of Sigma0
pL_f2 = 0.0870044;//fractions of Xi0/m
}
else if(DataFlag==1||DataFlag==2){
PurityProton = 0.989859;
PurityLambda = 0.96768;
PurityXi = 0.956;//is this correct?
pp_f0 = 0.87397;
pp_f1 = 0.0882211;//fraction of Lambda
pL_f0 = 0.601008;//fraction of primary Lambdas
pL_f1 = 0.200336;//fraction of Sigma0
pL_f2 = 0.0993283;//fractions of Xi0/m
}
}
else if(DataPeriod=="pPb5TeV"){
if(DataFlag==0){
PurityProton = 0.984177 ;//pPb 5 TeV
PurityLambda = 0.93171;
PurityXi = 0.9;//new cuts
pp_f0 = 0.862431;
pp_f1 = 0.0962984;
pL_f0 = 0.744516;//fraction of primary Lambdas
pL_f1 = 0.248172;//fraction of Sigma0
pL_f2 = 0.003656;//fractions of Xi0/m
PurityProton = 0.984265 ;//pPb 5 TeV
PurityLambda = 0.937761;
PurityXi = 0.88;//new cuts
pp_f0 = 0.862814;
pp_f1 = 0.09603;
pL_f0 = 0.521433;
pL_f1 = 0.173811;
pL_f2 = 0.152378;
}
else if(DataFlag==1||DataFlag==2){
//from 20th Aug 2018
PurityProton = 0.984265 ;//pPb 5 TeV
PurityLambda = 0.937761;
PurityXi = 0.88;//new cuts
pp_f0 = 0.862814;
pp_f1 = 0.09603;
pL_f0 = 0.521433;
pL_f1 = 0.173811;
pL_f2 = 0.152378;
}
}
else{
printf("FUCK YOU! Stirb du Wicht! Fat incular! Еби се в гъза!\n");
return;
}
//ADVANCED***
double ProtonPrim = pp_f0;
double arrayPercLamProton[3]={pp_f1/(1.-pp_f0)*0.8,pp_f1/(1.-pp_f0),pp_f1/(1.-pp_f0)*1.2};//+/- 20%
const double SigLambdaPrimDir = pL_f0+pL_f1;
double arrayPercSigLambda[3]={0.8*pL_f1/pL_f0,pL_f1/pL_f0,1.2*pL_f1/pL_f0};//1/3 +/- 20%
double arrayPercXiLambda[3]={pL_f2/(1.-pL_f0-pL_f1)*0.8,pL_f2/(1.-pL_f0-pL_f1),pL_f2/(1.-pL_f0-pL_f1)*1.2};//+/- 20%
//ratio Xi-(1530) to Xi-
const double Xim1530_to_Xim = 0.32*(1./3.);
//ratio Xi0(1530) to Xi0 (n=neutral)
const double Xin1530_to_Xim = 0.32*(2./3.);
const double Omegam_to_Xim = 0.1;
const double OmegamXim_BR = 0.086;
//following my lambda pars with the 3 possible modifications
//for the proton:
//0 = primary
//1 = from Lambda
//2 = other feeddown (flat)
//3 = missidentified
const unsigned NumChannels_p = 4;
double** Purities_p = new double* [3];
double** Fraction_p = new double* [3];
for(unsigned uVar=0; uVar<3; uVar++){
Purities_p[uVar] = new double [NumChannels_p];
Fraction_p[uVar] = new double [NumChannels_p];
Purities_p[uVar][0] = PurityProton;
Purities_p[uVar][1] = PurityProton;
Purities_p[uVar][2] = PurityProton;
Purities_p[uVar][3] = 1.-PurityProton;
Fraction_p[uVar][0] = ProtonPrim;
Fraction_p[uVar][1] = (1.-ProtonPrim)*(arrayPercLamProton[uVar]);
Fraction_p[uVar][2] = (1.-ProtonPrim)*(1.-arrayPercLamProton[uVar]);
Fraction_p[uVar][3] = 1.;
}
//for the Lambda:
//0 = primary
//1 = from Sigma0
//2 = from Xim
//3 = from Xi0
//4 = missidentified
const unsigned NumChannels_L = 5;
double*** Purities_L = new double** [3];
double*** Fraction_L = new double** [3];
for(unsigned uVarSL=0; uVarSL<3; uVarSL++){
Purities_L[uVarSL] = new double* [3];
Fraction_L[uVarSL] = new double* [3];
for(unsigned uVarXi=0; uVarXi<3; uVarXi++){
Purities_L[uVarSL][uVarXi] = new double [NumChannels_L];
Fraction_L[uVarSL][uVarXi] = new double [NumChannels_L];
Purities_L[uVarSL][uVarXi][0] = PurityLambda;
Purities_L[uVarSL][uVarXi][1] = PurityLambda;
Purities_L[uVarSL][uVarXi][2] = PurityLambda;
Purities_L[uVarSL][uVarXi][3] = PurityLambda;
Purities_L[uVarSL][uVarXi][4] = 1.-PurityLambda;
//the array is r = S/L, and S+L=1 are the fractions of Sigmas and Lambdas
double FracOfLambda = 1./(1.+arrayPercSigLambda[uVarSL]);
Fraction_L[uVarSL][uVarXi][0] = SigLambdaPrimDir*FracOfLambda;
Fraction_L[uVarSL][uVarXi][1] = SigLambdaPrimDir*(1.-FracOfLambda);
Fraction_L[uVarSL][uVarXi][2] = (1.-SigLambdaPrimDir)*(arrayPercXiLambda[uVarXi]);
Fraction_L[uVarSL][uVarXi][3] = (1.-SigLambdaPrimDir)*(1.-arrayPercXiLambda[uVarXi]);
Fraction_L[uVarSL][uVarXi][4] = 1.;
}
}
//for the Xi:
//0 = primary
//1 = from Xi-(1530)
//2 = from Xi0(1530)
//3 = from Omega
//4 = missidentified
const unsigned NumChannels_Xim = 5;
double** Purities_Xim = new double* [3];
double** Fraction_Xim = new double* [3];
for(unsigned uVar=0; uVar<3; uVar++){
Purities_Xim[uVar] = new double [NumChannels_Xim];
Fraction_Xim[uVar] = new double [NumChannels_Xim];
Purities_Xim[uVar][0] = PurityXi;
Purities_Xim[uVar][1] = PurityXi;
Purities_Xim[uVar][2] = PurityXi;
Purities_Xim[uVar][3] = PurityXi;
Purities_Xim[uVar][4] = 1.-PurityXi;
//the ratios that we have for Xis are referred to the total number of Xi particles (which already include all contributions)
//hence Xi1530_to_Xi indeed is simply the number of Xis that stem from a Xi1530
Fraction_Xim[uVar][0] = 1.-Xim1530_to_Xim-Xin1530_to_Xim-Omegam_to_Xim*OmegamXim_BR;
Fraction_Xim[uVar][1] = Xim1530_to_Xim;
Fraction_Xim[uVar][2] = Xin1530_to_Xim;
Fraction_Xim[uVar][3] = Omegam_to_Xim*OmegamXim_BR;
Fraction_Xim[uVar][4] = 1.;
}
//***
//!Binning
//This is for the CATS objects, make sure it covers the full femto range
const unsigned NumMomBins_pp = 95;
const double kMin_pp = 0;
const double kMax_pp = kMin_pp+4*NumMomBins_pp;//(4 is the bin width)
const unsigned NumMomBins_pL = 20;
const double kMin_pL = 0;
const double kMax_pL = kMin_pL+20*NumMomBins_pL;
const unsigned NumMomBins_LL = 24;
const double kMin_LL = 0;
const double kMax_LL = kMin_LL+20*NumMomBins_LL;
const unsigned NumMomBins_pXim = 20;
const double kMin_pXim = 0;
const double kMax_pXim = kMin_pXim+20*NumMomBins_pXim;
//starting value, do not worry about it too much
const double GaussSourceSize = 1.2;
//ADVANCED***
//#,#,POT_ID,POT_FLAG,t_tot,t1,t2,s,l,j
double PotPars1S0[10]={0,0,NN_AV18,v18_Coupled3P2,1,1,1,0,0,0};
double PotPars3P0[10]={0,0,NN_AV18,v18_Coupled3P2,1,1,1,1,1,0};
double PotPars3P1[10]={0,0,NN_AV18,v18_Coupled3P2,1,1,1,1,1,1};
double PotPars3P2[10]={0,0,NN_AV18,v18_Coupled3P2,1,1,1,1,1,2};
CATSparameters cPotPars1S0(CATSparameters::tPotential,8,true);
cPotPars1S0.SetParameters(&PotPars1S0[2]);
CATSparameters cPotPars3P0(CATSparameters::tPotential,8,true);
cPotPars3P0.SetParameters(&PotPars3P0[2]);
CATSparameters cPotPars3P1(CATSparameters::tPotential,8,true);
cPotPars3P1.SetParameters(&PotPars3P1[2]);
CATSparameters cPotPars3P2(CATSparameters::tPotential,8,true);
cPotPars3P2.SetParameters(&PotPars3P2[2]);
const double Weight1S0 = 3./12.;
const double Weight3P0 = 1./12.;
const double Weight3P1 = 3./12.;
const double Weight3P2 = 5./12.;
MS_GaussExp_mT_Simple MSGEMTS_pp;
MS_GaussExp_mT_Simple MSGEMTS_pL;
MS_GaussExp_mT_Simple MSGEMTS_LL;
MS_GaussExp_mT_Simple MSGEMTS_pXim;
DLM_StableDistribution Stable_pp;
DLM_StableDistribution Stable_pL;
DLM_StableDistribution Stable_LL;
DLM_StableDistribution Stable_pXim;
DLM_CleverLevy CleverLevy_pp;
DLM_CleverLevy CleverLevy_pL;
DLM_CleverLevy CleverLevy_LL;
DLM_CleverLevy CleverLevy_pXim;
//0 is single Levy
//1 is Levy for a difference
//2 is the Nolan parametrization
const int ClevLevType = 2;
CleverLevy_pp.InitStability(20,1,2);
CleverLevy_pp.InitScale(30,0.3,1.7);
CleverLevy_pp.InitRad(256,0,64);
CleverLevy_pp.InitType(ClevLevType);
CleverLevy_pL.InitStability(20,1,2);
CleverLevy_pL.InitScale(30,0.3,1.7);
CleverLevy_pL.InitRad(256,0,64);
CleverLevy_pL.InitType(ClevLevType);
CleverLevy_LL.InitStability(20,1,2);
CleverLevy_LL.InitScale(30,0.3,1.7);
CleverLevy_LL.InitRad(256,0,64);
CleverLevy_LL.InitType(ClevLevType);
CleverLevy_pXim.InitStability(20,1,2);
CleverLevy_pXim.InitScale(30,0.3,1.7);
CleverLevy_pXim.InitRad(256,0,64);
CleverLevy_pXim.InitType(ClevLevType);
const double Mass_p=938.272; const double Mass_L=1115.683;
//const TString THERMALFILE = "/media/dmihaylov/My\ Book/TempCalc/thermalTest2_PRS=1.10_LRS=1.10_PTS=1.10_LTS=1.10.f19";
//const TString THERMALFILE = "/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/LambdaProtonPotentials/CRAB/CRAB_DLM2/ThermalSpectrum12/thermalTest12_PRS=1.60_1.60_1.10_PTS=1.00.f19";
//const TString THERMALFILE = "/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/LambdaProtonPotentials/CRAB/CRAB_DLM2/ThermalSpectrum_pXi_2/ThermalSpectrum_pXi_2_P=0.80_1.40_0.50_Xi=1.10_1.10_0.00_PTS=1.00.f19";
CATS AB_pp;
AB_pp.SetMaxNumThreads(1);
double Pars_pp[9] = {0,0,0,GaussSourceSize*1.2,GaussSourceSize/1.2,0.5,1,1};
CATSparameters Source_pp(CATSparameters::tSource,6,true);
Source_pp.SetParameters(&Pars_pp[3]);
//double Pars_pp[9] = {0,0,0,1.0,1.63,0.4253,1335.5,Mass_p,140};
if(vSource==0){
AB_pp.SetAnaSource(GaussSource, Source_pp);
//AB_pp.SetAnaSource(GaussExpTotIdenticalSimple_2body, Pars_pp);
//AB_pp.SetAnaSource((umtrs1_1.*(&UMTRS1::Source)),Pars_pp);
//(umtrs1_1.*Source)()
//&UMTRS1::Source
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
}
else if(vSource==1){
AB_pp.SetAnaSource(CauchySource, Source_pp);
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
}
else if(vSource==2){
AB_pp.SetAnaSource(DoubleGaussSource, Source_pp);
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
}
else if(vSource==3){
AB_pp.SetUseAnalyticSource(false);
//AB_pp.SetInputFileName("/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/GeneralFemtoStuff/EPOS_OUTPUT_FILES/Scratch9_OSCAR1997_AllLrzProtonFiles.f19");
AB_pp.SetInputFileName("/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/GeneralFemtoStuff/EPOS_OUTPUT_FILES/EPOS_LBF_pp91/pp_nist0_030219.f19");
//AB_pp.SetInputFileName(THERMALFILE.Data());
if(EPOS_MAX_PAIRS) AB_pp.SetMaxPairsToRead(EPOS_MAX_PAIRS);
AB_pp.SetMaxPairsPerBin(16000/2);
AB_pp.SetMixingDepth(EPOS_MIX_DEP);
AB_pp.SetThetaDependentSource(EPOS_THETA_DEP);
AB_pp.SetTransportRenorm(TRANSP_RENORM);
if(EPOS_THETA_DEP){
AB_pp.SetGridEpsilon(1./8192);
AB_pp.SetGridMaxDepth(8);
}
AB_pp.SetTauCorrection(TAU_CORR);
}
else if(vSource==4){
AB_pp.SetAnaSource(GaussCauchySource, Source_pp);
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
}
else if(vSource==5){
AB_pp.SetAnaSource(GaussOSL_MC, Source_pp);
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
}
else if(vSource==6){
MSGEMTS_pp.SetNum_mT(4);
MSGEMTS_pp.SetMean_mT(0,1.047325*1000.);
MSGEMTS_pp.SetMean_mT(1,1.16534*1000.);
MSGEMTS_pp.SetMean_mT(2,1.35613*1000.);
MSGEMTS_pp.SetMean_mT(3,1.849765*1000.);
MSGEMTS_pp.SetWeight_mT(0,0.2902592257);
MSGEMTS_pp.SetWeight_mT(1,0.3337219832);
MSGEMTS_pp.SetWeight_mT(2,0.2568598596);
MSGEMTS_pp.SetWeight_mT(3,0.1191589314);
//Initial values
//MSGEMTS_pp.SetLinear_mT(1.10576);
//MSGEMTS_pp.SetSlope_mT(-0.253250e-3);
//November revision
MSGEMTS_pp.SetLinear_mT(1.11830e+00*1.1);
MSGEMTS_pp.SetSlope_mT(-0.253753e-03*1.1);
}
else if(vSource==7){
AB_pp.SetAnaSource(CatsSourceForwarder, &Stable_pp, 4);
AB_pp.SetAnaSource(0,pp_Stability,false);
AB_pp.SetAnaSource(1,0,false);
AB_pp.SetAnaSource(2,Stable_Scale,false);
AB_pp.SetAnaSource(3,0,false);
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
}
else if(vSource==8){
//use the mT scaling as a dummy way of including two Gaussians into the fit
//function trough two points.
//we set dummy values for the mT (1 and 2), while the values
//for the radii are set based on our fit results
double fun0=0.515*1.00;
double fun1=1.105*1.00;
double xVal0=1;
double xVal1=2;
double parA = (fun1-fun0)/(xVal1-xVal0);
double parB = (fun0*xVal1-fun1*xVal0)/(xVal1-xVal0);
MSGEMTS_pp.SetNum_mT(2);
MSGEMTS_pp.SetMean_mT(0,1.);
MSGEMTS_pp.SetMean_mT(1,2.);
//these are the weights of the two radii
MSGEMTS_pp.SetWeight_mT(0,0.563);
MSGEMTS_pp.SetWeight_mT(1,0.437);
MSGEMTS_pp.SetLinear_mT(parA);
MSGEMTS_pp.SetSlope_mT(parB);
}
if(vSource==6||vSource==8){
MSGEMTS_pp.SetMass(0,Mass_p);
MSGEMTS_pp.SetMass(1,Mass_p);
//Initial values
//MSGEMTS_pp.SetMassR(0,1368.92);
//MSGEMTS_pp.SetMassR(1,1368.92);
//MSGEMTS_pp.SetMassD(0,138);
//MSGEMTS_pp.SetMassD(1,138);
//MSGEMTS_pp.SetTau(0,1.6034212583);
//MSGEMTS_pp.SetTau(1,1.6034212583);
//MSGEMTS_pp.SetResonanceWeight(0,1.-0.3261);
//MSGEMTS_pp.SetResonanceWeight(1,1.-0.3261);
//November revision
MSGEMTS_pp.SetMassR(0,1361.52);
MSGEMTS_pp.SetMassR(1,1361.52);
MSGEMTS_pp.SetMassD(0,138);
MSGEMTS_pp.SetMassD(1,138);
MSGEMTS_pp.SetTau(0,1.65);
MSGEMTS_pp.SetTau(1,1.65);
MSGEMTS_pp.SetResonanceWeight(0,1.-0.3578);
MSGEMTS_pp.SetResonanceWeight(1,1.-0.3578);
AB_pp.SetAnaSource(CatsSourceForwarder, &MSGEMTS_pp);
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
}
else if(vSource==9){
Pars_pp[3] = GaussSourceSize; Pars_pp[4] = 2.0; Pars_pp[5] = 3;
Source_pp.SetParameters(&Pars_pp[3]);
AB_pp.SetAnaSource(LevySource3D_2particle, Source_pp);
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
AB_pp.SetMomentumDependentSource(false);
}
else if(vSource==10){
AB_pp.SetAnaSource(CatsSourceForwarder, &CleverLevy_pp, 2);
AB_pp.SetAnaSource(0,Stable_Scale,false);
AB_pp.SetAnaSource(1,1,false);
AB_pp.SetUseAnalyticSource(true);
AB_pp.SetThetaDependentSource(false);
AB_pp.SetMomentumDependentSource(false);
}
AB_pp.SetExcludeFailedBins(false);
AB_pp.SetMomBins(NumMomBins_pp,kMin_pp,kMax_pp);
AB_pp.SetNumChannels(4);
AB_pp.SetNumPW(0,2);
AB_pp.SetNumPW(1,2);
AB_pp.SetNumPW(2,2);
AB_pp.SetNumPW(3,2);
AB_pp.SetSpin(0,0);
AB_pp.SetSpin(1,1);
AB_pp.SetSpin(2,1);
AB_pp.SetSpin(3,1);
AB_pp.SetChannelWeight(0, Weight1S0);
AB_pp.SetChannelWeight(1, Weight3P0);
AB_pp.SetChannelWeight(2, Weight3P1);
AB_pp.SetChannelWeight(3, Weight3P2);
AB_pp.SetQ1Q2(1);
AB_pp.SetPdgId(2212, 2212);
AB_pp.SetRedMass( 0.5*Mass_p );
AB_pp.SetShortRangePotential(0,0,fDlmPot,cPotPars1S0);
AB_pp.SetShortRangePotential(1,1,fDlmPot,cPotPars3P0);
AB_pp.SetShortRangePotential(2,1,fDlmPot,cPotPars3P1);
AB_pp.SetShortRangePotential(3,1,fDlmPot,cPotPars3P2);
//AB_pp.SetGamow(true);
//AB_pp.SetMaxNumThreads(1);
AB_pp.KillTheCat();
CATS AB_pL;
AB_pL.SetMaxNumThreads(1);
double Pars_pL[8] = {0,0,0,GaussSourceSize*1.2,GaussSourceSize/1.2,0.5,1,1};
CATSparameters Source_pL(CATSparameters::tSource,6,true);
Source_pL.SetParameters(&Pars_pL[3]);
//double Pars_pL[14] = {0,0,0,1.0,1.63,0.4253,1335.5,Mass_p,140,5.49,0.3972,1338.6,Mass_L,140};
if(vSource==0){
AB_pL.SetAnaSource(GaussSource, Source_pL);
//AB_pL.SetAnaSource(GaussExpTotSimple_2body, Pars_pL);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
}
else if(vSource==1){
AB_pL.SetAnaSource(CauchySource, Source_pL);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
}
else if(vSource==2){
AB_pL.SetAnaSource(DoubleGaussSource, Source_pL);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
}
else if(vSource==3){
AB_pL.SetUseAnalyticSource(false);
//AB_pL.SetInputFileName("/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/GeneralFemtoStuff/EPOS_OUTPUT_FILES/Scratch9_OSCAR1997_AllLrzLambdaFiles.f19");
AB_pL.SetInputFileName("/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/GeneralFemtoStuff/EPOS_OUTPUT_FILES/EPOS_LBF_pp91/pL_nist0_030219.f19");
//AB_pL.SetInputFileName(THERMALFILE.Data());
if(EPOS_MAX_PAIRS) AB_pL.SetMaxPairsToRead(EPOS_MAX_PAIRS);
AB_pL.SetMaxPairsPerBin(16000/2);
AB_pL.SetMixingDepth(EPOS_MIX_DEP);
AB_pL.SetThetaDependentSource(EPOS_THETA_DEP);
AB_pL.SetTransportRenorm(TRANSP_RENORM);
if(EPOS_THETA_DEP){
AB_pL.SetGridEpsilon(1./8192);
AB_pL.SetGridMaxDepth(8);
}
AB_pL.SetTauCorrection(TAU_CORR);
}
else if(vSource==4){
AB_pL.SetAnaSource(GaussCauchySource, Source_pL);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
}
else if(vSource==5){
AB_pL.SetAnaSource(GaussOSL_MC, Source_pL);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
}
else if(vSource==6){
MSGEMTS_pL.SetNum_mT(4);
MSGEMTS_pL.SetMean_mT(0,1.047325*1000.);
MSGEMTS_pL.SetMean_mT(1,1.16534*1000.);
MSGEMTS_pL.SetMean_mT(2,1.35613*1000.);
MSGEMTS_pL.SetMean_mT(3,1.849765*1000.);
MSGEMTS_pL.SetWeight_mT(0,0.0031967451);
MSGEMTS_pL.SetWeight_mT(1,0.2513975076);
MSGEMTS_pL.SetWeight_mT(2,0.4929569038);
MSGEMTS_pL.SetWeight_mT(3,0.2524488435);
//Initial values
//MSGEMTS_pL.SetLinear_mT(1.10576);
//MSGEMTS_pL.SetSlope_mT(-0.253250e-3);
//November revision
MSGEMTS_pL.SetLinear_mT(1.11830e+00*1.1);
MSGEMTS_pL.SetSlope_mT(-0.253753e-03*1.1);
}
else if(vSource==7){
AB_pL.SetAnaSource(CatsSourceForwarder, &Stable_pL, 4);
AB_pL.SetAnaSource(0,pL_Stability,false);
AB_pL.SetAnaSource(1,0,false);
AB_pL.SetAnaSource(2,Stable_Scale,false);
AB_pL.SetAnaSource(3,0,false);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
}
else if(vSource==8){
//use the mT scaling as a dummy way of including two Gaussians into the fit
//function trough two points.
//we set dummy values for the mT (1 and 2), while the values
//for the radii are set based on our fit results
double fun0=0.515*1.00;
double fun1=1.105*1.00;
double xVal0=1;
double xVal1=2;
double parA = (fun1-fun0)/(xVal1-xVal0);
double parB = (fun0*xVal1-fun1*xVal0)/(xVal1-xVal0);
MSGEMTS_pL.SetNum_mT(2);
MSGEMTS_pL.SetMean_mT(0,1.);
MSGEMTS_pL.SetMean_mT(1,2.);
//these are the weights of the two radii
MSGEMTS_pL.SetWeight_mT(0,0.563);
MSGEMTS_pL.SetWeight_mT(1,0.437);
MSGEMTS_pL.SetLinear_mT(parA);
MSGEMTS_pL.SetSlope_mT(parB);
}
if(vSource==6||vSource==8){
//Initial values
//MSGEMTS_pL.SetMass(0,Mass_p);
//MSGEMTS_pL.SetMass(1,Mass_L);
//MSGEMTS_pL.SetMassR(0,1368.92);
//MSGEMTS_pL.SetMassR(1,1461.460557);
//MSGEMTS_pL.SetMassD(0,138);
//MSGEMTS_pL.SetMassD(1,138);
//MSGEMTS_pL.SetTau(0,1.6034212583);
//MSGEMTS_pL.SetTau(1,4.777240795);
//MSGEMTS_pL.SetResonanceWeight(0,1.-0.3261);
//MSGEMTS_pL.SetResonanceWeight(1,1.-0.3449);
//November revision
MSGEMTS_pL.SetMass(0,Mass_p);
MSGEMTS_pL.SetMass(1,Mass_L);
MSGEMTS_pL.SetMassR(0,1361.52);
MSGEMTS_pL.SetMassR(1,1462.93);
MSGEMTS_pL.SetMassD(0,138);
MSGEMTS_pL.SetMassD(1,138);
MSGEMTS_pL.SetTau(0,1.65);
MSGEMTS_pL.SetTau(1,4.69);
MSGEMTS_pL.SetResonanceWeight(0,1.-0.3578);
MSGEMTS_pL.SetResonanceWeight(1,1.-0.3562);
AB_pL.SetAnaSource(CatsSourceForwarder, &MSGEMTS_pL);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
}
else if(vSource==9){
Pars_pL[3] = GaussSourceSize; Pars_pL[4] = 2.0; Pars_pL[5] = 3;
Source_pL.SetParameters(&Pars_pL[3]);
AB_pL.SetAnaSource(LevySource3D_2particle, Source_pL);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
AB_pL.SetMomentumDependentSource(false);
}
else if(vSource==10){
AB_pL.SetAnaSource(CatsSourceForwarder, &CleverLevy_pL, 2);
AB_pL.SetAnaSource(0,Stable_Scale,false);
AB_pL.SetAnaSource(1,1,false);
AB_pL.SetUseAnalyticSource(true);
AB_pL.SetThetaDependentSource(false);
AB_pL.SetMomentumDependentSource(false);
}
AB_pL.SetMomBins(NumMomBins_pL,kMin_pL,kMax_pL);
AB_pL.SetNumChannels(2);
AB_pL.SetNumPW(0,1);
AB_pL.SetNumPW(1,1);
AB_pL.SetSpin(0,0);
AB_pL.SetSpin(1,1);
AB_pL.SetChannelWeight(0, 0.25);
AB_pL.SetChannelWeight(1, 0.75);
AB_pL.SetQ1Q2(0);
AB_pL.SetPdgId(2212, 3122);
AB_pL.SetRedMass( (Mass_p*Mass_L)/(Mass_p+Mass_L) );
//!TEMPORARY: WE USE USMANI, ASK DIMI ABOUT FURTHER CHANGES (LIKE USE THE NLO)
//#,#,POT_ID,POT_FLAG,t_tot,t1,t2,s,l,j
//double pLamPotPars1S0[10]={0,0,pL_UsmaniOli,0,0,0,0,0,0,0};
//double pLamPotPars3S1[10]={0,0,pL_UsmaniOli,0,0,0,0,1,0,1};
//AB_pL.SetShortRangePotential(0,0,fDlmPot,pLamPotPars1S0);
//AB_pL.SetShortRangePotential(1,0,fDlmPot,pLamPotPars3S1);
DLM_Histo<complex<double>>*** ExternalWF=NULL;
ExternalWF = Init_pL_Haidenbauer( "/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/GeneralFemtoStuff/CorrelationFiles_2018/Haidenbauer/pLambdaNLO/",
AB_pL, 10, 600);
AB_pL.SetExternalWaveFunction(ExternalWF);
//AB_pL.SetMaxNumThreads(1);
AB_pL.KillTheCat();
double pXimPotParsI0S0[11]={0,0,pXim_Lattice,12,0,-1,1,0,0,0,0};
double pXimPotParsI0S1[11]={0,0,pXim_Lattice,12,0,-1,1,1,0,1,0};
double pXimPotParsI1S0[11]={0,0,pXim_Lattice,6,1,1,1,0,0,0,0};
double pXimPotParsI1S1[11]={0,0,pXim_Lattice,6,1,1,1,1,0,1,0};
CATSparameters c_pXimPotParsI0S0(CATSparameters::tPotential,9,true);
c_pXimPotParsI0S0.SetParameters(&pXimPotParsI0S0[2]);
CATSparameters c_pXimPotParsI0S1(CATSparameters::tPotential,9,true);
c_pXimPotParsI0S1.SetParameters(&pXimPotParsI0S1[2]);
CATSparameters c_pXimPotParsI1S0(CATSparameters::tPotential,9,true);
c_pXimPotParsI1S0.SetParameters(&pXimPotParsI1S0[2]);
CATSparameters c_pXimPotParsI1S1(CATSparameters::tPotential,9,true);
c_pXimPotParsI1S1.SetParameters(&pXimPotParsI1S1[2]);
CATS AB_pXim;
AB_pXim.SetMaxNumThreads(1);
const double Mass_Xim = 1321.7;
double Pars_pXi[8] = {0,0,0,GaussSourceSize*1.2,GaussSourceSize/1.2,0.5,1,1};
CATSparameters Source_pXi(CATSparameters::tSource,6,true);
Source_pXi.SetParameters(&Pars_pXi[3]);
if(vSource==0){
AB_pXim.SetAnaSource(GaussSource, Source_pXi);
AB_pXim.SetUseAnalyticSource(true);
AB_pXim.SetThetaDependentSource(false);
}
else if(vSource==1){
AB_pXim.SetAnaSource(CauchySource, Source_pXi);
AB_pXim.SetUseAnalyticSource(true);
AB_pXim.SetThetaDependentSource(false);
}
else if(vSource==2){
AB_pXim.SetAnaSource(DoubleGaussSource, Source_pXi);
AB_pXim.SetUseAnalyticSource(true);
AB_pXim.SetThetaDependentSource(false);
}
else if(vSource==3){
AB_pXim.SetUseAnalyticSource(false);
//AB_pXim.SetInputFileName("/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/GeneralFemtoStuff/EPOS_OUTPUT_FILES/Scratch9_OSCAR1997_AllLrzLambdaFiles.f19");
AB_pXim.SetInputFileName("/home/dmihaylov/Dudek_Ubuntu/Work/Kclus/GeneralFemtoStuff/EPOS_OUTPUT_FILES/EPOS_LBF_pp91/pL_nist0_030219.f19");
//AB_pXim.SetInputFileName(THERMALFILE.Data());
if(EPOS_MAX_PAIRS) AB_pXim.SetMaxPairsToRead(EPOS_MAX_PAIRS);
AB_pXim.SetMaxPairsPerBin(16000/2);
AB_pXim.SetMixingDepth(EPOS_MIX_DEP);
AB_pXim.SetThetaDependentSource(EPOS_THETA_DEP);
AB_pXim.SetTransportRenorm(TRANSP_RENORM);
if(EPOS_THETA_DEP){
AB_pXim.SetGridEpsilon(1./8192);
AB_pXim.SetGridMaxDepth(8);
}
AB_pXim.SetTauCorrection(TAU_CORR);
}
else if(vSource==4){
AB_pXim.SetAnaSource(GaussCauchySource, Source_pXi);
AB_pXim.SetUseAnalyticSource(true);
AB_pXim.SetThetaDependentSource(false);
}
else if(vSource==5){
AB_pXim.SetAnaSource(GaussOSL_MC, Source_pXi);
AB_pXim.SetUseAnalyticSource(true);
AB_pXim.SetThetaDependentSource(false);
}
else if(vSource==6){
MSGEMTS_pXim.SetNum_mT(4);
MSGEMTS_pXim.SetMean_mT(0,1.047325*1000.);
MSGEMTS_pXim.SetMean_mT(1,1.16534*1000.);
MSGEMTS_pXim.SetMean_mT(2,1.35613*1000.);
MSGEMTS_pXim.SetMean_mT(3,1.849765*1000.);
MSGEMTS_pXim.SetWeight_mT(0,0.0);
MSGEMTS_pXim.SetWeight_mT(1,0.0015342129);
MSGEMTS_pXim.SetWeight_mT(2,0.4470696533);
MSGEMTS_pXim.SetWeight_mT(3,0.5513961338);
//initial values
//MSGEMTS_pXim.SetLinear_mT(1.10576);
//MSGEMTS_pXim.SetSlope_mT(-0.253250e-3);
//November revision
MSGEMTS_pXim.SetLinear_mT(1.11830e+00*1.1);
MSGEMTS_pXim.SetSlope_mT(-0.253753e-03*1.1);
}
else if(vSource==7){
AB_pXim.SetAnaSource(CatsSourceForwarder, &Stable_pXim, 4);
AB_pXim.SetAnaSource(0,pXim_Stability,false);
AB_pXim.SetAnaSource(1,0,false);
AB_pXim.SetAnaSource(2,Stable_Scale,false);
AB_pXim.SetAnaSource(3,0,false);
AB_pXim.SetUseAnalyticSource(true);
AB_pXim.SetThetaDependentSource(false);
}
else if(vSource==8){
//use the mT scaling as a dummy way of including two Gaussians into the fit
//function trough two points.
//we set dummy values for the mT (1 and 2), while the values
//for the radii are set based on our fit results
double fun0=0.515*1.00;
double fun1=1.105*1.00;
double xVal0=1;
double xVal1=2;
double parA = (fun1-fun0)/(xVal1-xVal0);
double parB = (fun0*xVal1-fun1*xVal0)/(xVal1-xVal0);
MSGEMTS_pXim.SetNum_mT(2);
MSGEMTS_pXim.SetMean_mT(0,1.);
MSGEMTS_pXim.SetMean_mT(1,2.);
//these are the weights of the two radii
MSGEMTS_pXim.SetWeight_mT(0,0.563);
MSGEMTS_pXim.SetWeight_mT(1,0.437);
MSGEMTS_pXim.SetLinear_mT(parA);
MSGEMTS_pXim.SetSlope_mT(parB);
}
if(vSource==6||vSource==8){
//initial values
//MSGEMTS_pXim.SetMass(0,Mass_p);
//MSGEMTS_pXim.SetMass(1,Mass_Xim);
//MSGEMTS_pXim.SetMassR(0,1368.92);
//MSGEMTS_pXim.SetMassR(1,1823);
//MSGEMTS_pXim.SetMassD(0,138);
//MSGEMTS_pXim.SetMassD(1,138);
//MSGEMTS_pXim.SetTau(0,1.6034212583);
//MSGEMTS_pXim.SetTau(1,8.220833333);
//MSGEMTS_pXim.SetResonanceWeight(0,1.-0.3261);
//MSGEMTS_pXim.SetResonanceWeight(1,1.-0.9545);
//November revision
MSGEMTS_pXim.SetMass(0,Mass_p);
MSGEMTS_pXim.SetMass(1,Mass_Xim);
MSGEMTS_pXim.SetMassR(0,1361.52);
MSGEMTS_pXim.SetMassR(1,1823);
MSGEMTS_pXim.SetMassD(0,138);
MSGEMTS_pXim.SetMassD(1,138);
MSGEMTS_pXim.SetTau(0,1.65);
MSGEMTS_pXim.SetTau(1,8.220833333);
MSGEMTS_pXim.SetResonanceWeight(0,1.-0.3261);
MSGEMTS_pXim.SetResonanceWeight(1,1.-0.9545);
AB_pXim.SetAnaSource(CatsSourceForwarder, &MSGEMTS_pXim);
AB_pXim.SetUseAnalyticSource(true);
AB_pXim.SetThetaDependentSource(false);
}
else if(vSource==9){
Pars_pXi[3] = GaussSourceSize; Pars_pXi[4] = 2.0; Pars_pXi[5] = 3;
Source_pXi.SetParameters(&Pars_pXi[3]);