-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmergeChannelChunks.m
262 lines (207 loc) · 7.53 KB
/
mergeChannelChunks.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
function rez = mergeChannelChunks(allrez,chunckInds)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
%
% define all pairs to be checked, determine overlap region, find units
% that are in that region, compare waveforms and number of spikes
Nchunks = numel(allrez);
NfiltChunk = cellfun(@(x) size(x.simScore,1),allrez);
cumtemps = [0;cumsum(NfiltChunk)];
NspikesChunk = cellfun(@(x) size(x.st3,1),allrez);
NspikesTOT = sum(NspikesChunk);
cumspikes = [0;cumsum(NspikesChunk)];
%============================================================
% combine spikes
st3 = zeros(NspikesTOT, 3);
for ichunk = 1:Nchunks
istart = cumspikes(ichunk)+1;
iend = cumspikes(ichunk+1);
currspikes = allrez{ichunk}.st3(:,1:3);
currspikes(:,2) = currspikes(:,2) + cumtemps(ichunk);
st3(istart:iend,:) = currspikes;
end
% sort spikes
st3 = sortrows(st3, 1);
% remove duplicate spikes
st3 = unique(st3, 'rows');
% re-index templates
[~, ~, ic] = unique(st3(:,2));
st3(:,2) = ic;
Nfilt = max(ic);
% remove templates with very few spikes (e.g. < 20)
Nspikes = accumarray(st3(:,2),1,[Nfilt 1], @sum);
spkthres1 = 100;
irem = find(Nspikes < spkthres1);
st3(ismembc(st3(:,2), irem), :) = [];
% re-index templates
[~, ~, ic] = unique(st3(:,2));
st3(:,2) = ic;
Nfilt = max(ic);
fprintf('Removed %d units with less than %d spikes, %d units remaining\n', numel(irem), spkthres1,Nfilt);
%============================================================
ops = allrez{1}.ops;
Nchan = ops.Nchan;
estas = zeros(ops.nt0, Nchan, Nfilt,'single');
normfac = zeros(Nfilt,1,'single');
dt =-ops.nt0min + (1:ops.nt0);
Nbatch = ops.Nbatch;
NT = ops.NT;
batchstart = 0:NT:NT*Nbatch;
%============================================================
fid = fopen(ops.fproc, 'r');
fprintf('Merging sorted results... '); msg = [];
for ibatch = 1:4:Nbatch
offset = 2 * Nchan*batchstart(ibatch);
fseek(fid, offset, 'bof');
dat = fread(fid, [NT Nchan], '*int16');
% move data to GPU and scale it
dat = double(gpuArray(dat));
dat = dat / ops.scaleproc;
if ibatch == 1
ioffset = 0;
else
ioffset= ops.ntbuff;
end
stmin = (NT-ops.ntbuff)*(ibatch-1) - ioffset;
stmax = stmin + NT;
currid = st3(:,1)>stmin & st3(:,1)<stmax;
stcurr = st3(currid,:);
if isempty(stcurr), continue, end
stimescurr = stcurr(:,1) - stmin;
irem = stimescurr+max(dt) > NT | stimescurr + min(dt) <1;
stcurr(irem, :) = [];
stimescurr(irem) = [];
% tic;
% spkshapes = reshape(dat(stimescurr + dt,:), [size(stimescurr,1), numel(dt)*Nchan]);
%
% nspkcurr = accumarray(stcurr(:,2),1,[Nfilt,1],@sum);
% [iun,~,ic_curr] = unique(stcurr(:,2));
% currsparse = sparse(1:numel(stimescurr), ic_curr, 1,numel(stimescurr), max(ic_curr));
% currsum = spkshapes'*currsparse;
% currsum = reshape(currsum, [numel(dt),Nchan,max(ic_curr)]);
% estas(:,:,iun) = estas(:,:,iun) + currsum;
% toc;
[iun,~,ic_curr] = unique(stcurr(:,2));
spgpu = sparse(1:numel(stimescurr), ic_curr, gpuArray(1),numel(stimescurr), max(ic_curr));
gpucurr = gpuArray.zeros([numel(dt), Nchan, numel(iun)],'single');
for ii = 1:numel(dt)
gpucurr(ii, :, :) = dat(stimescurr + dt(ii),:)'*spgpu;
end
estas(:,:,iun) = estas(:,:,iun) + gather(gpucurr);
nspkcurr = accumarray(stcurr(:,2),1,[Nfilt,1],@sum);
normfac = normfac + nspkcurr;
% print message
if ops.verbose
fprintf(repmat('\b', 1, numel(msg)));
msg = sprintf('Time %2.0f min, batch %d/%d \n', ...
toc/60, ibatch,Nbatch);
fprintf(msg);
end
end
fclose(fid);
%normalize eSTAs, make sure no NaNs are produced!!!
estas = estas./reshape(normfac, [1,1,Nfilt]);
% remove ugly templates or templates with no spikes
%qual = sq(median(range(estas./max(abs(estas),[],[1 2]),1),2));
qual = sq(median(std(estas./max(abs(estas),[],[1 2]),1),2));
%irem = qual > 0.1;
irem = find(qual > 0.1 | normfac == 0);
st3(ismembc(st3(:,2), irem), :) = [];
% re-index templates
[ia, ~, ic] = unique(st3(:,2));
estas = estas(:,:,ia);
normfac = normfac(ia);
st3(:,2) = ic;
Nfilt = max(ic);
fprintf('Removed %d units with noise templates, %d units remaining\n', numel(irem), Nfilt);
% calculate similarities
[Xsim,lagsim] = compareSpikeTemplatesCMOS(estas);
Xsim(isnan(Xsim)) = 0;
Xsim = Xsim - diag(diag(Xsim));
% remove more units
Nspikes = accumarray(st3(:,2),1,[Nfilt 1], @sum);
irem = find(max(Xsim,[],2) < 0.5 & Nspikes < 1000);
st3(ismembc(st3(:,2), irem), :) = [];
% re-index templates
[ia, ~, ic] = unique(st3(:,2));
estas = estas(:,:,ia);
normfac = normfac(ia);
st3(:,2) = ic;
Xsim = Xsim(ia,ia);
lagsim = lagsim(ia,ia);
Nfilt = max(ic);
fprintf('Removed %d units with less than 1000 spikes and low similarity, %d units remaining\n', numel(irem), Nfilt);
% do easy merges
st4 = find_merges2(st3, Xsim, ops.fs,lagsim);
[~, ~, stidfin] = unique(st4(:,2));
clustids = accumarray(stidfin, st3(:,2), [],@(x) {unique(x)});
mergesperunit = cellfun(@numel, clustids) - 1;
Nunitsf = numel(clustids);
st4(:,2) = stidfin;
% instead of adding up templates, use the one from the first merger
final_temps = estas(:,:, cellfun(@(x) x(1), clustids));
% final_temps = zeros(numel(dt), Nchan, Nunitsf, 'single');
% simpleunitids = [clustids{mergesperunit == 0}];
% final_temps(:,:, mergesperunit == 0) = estas(:,:, simpleunitids);
% mergeIds = find(mergesperunit>0);
%
% for ii = 1:numel(mergeIds)
% currtemp = clustids{mergeIds(ii)};
% currspk = normfac(currtemp);
% avgtemp = reshape(estas(:,:,currtemp), [numel(dt)*Nchan, numel(currtemp)]) *currspk/sum(currspk);
% final_temps(:,:,mergeIds(ii)) = reshape(avgtemp, [numel(dt),Nchan]);
% end
% recalculate similarities
[Xsim2,lagsim2] = compareSpikeTemplatesCMOS(final_temps);
Xsim2(isnan(Xsim2)) = 0;
Nfilt = size(Xsim2,1);
% do easy duplicate removal
isdupli = find_duplicates2(st4, Xsim2, ops.fs, final_temps, [allrez{1}.xc(:) allrez{1}.yc(:)]);
st4(ismembc(st4(:,2), find(isdupli)), :) = [];
% re-index templates
[ia, ~, ic] = unique(st4(:,2));
final_temps = final_temps(:,:,ia);
st4(:,2) = ic;
Xsim2 = Xsim2(ia,ia);
lagsim2 = lagsim2(ia,ia);
Nfilt = max(ic);
fprintf('%d units remaining, good luck with the curation\n', Nfilt);
% calculate PC components
% for spikes that were missed, give them the average component
% extract low-rank templates from elec images
[W, U, mu, UtU, nu] = decompose_dWU(ops, final_temps, ops.Nrank,allrez{1}.ops.kcoords);
% recalculate similarities based on low-rank decomposition
% edit W for phy
W = cat(1, zeros(ops.nt0 - 2*ops.nt0min - 1, Nfilt, ops.Nrank), W);
% sort spike times
[~, isort] = sort(st4(:,1),'ascend');
st4 = st4(isort,:);
% sort pairwise template
rez = struct();
rez.simScore = Xsim2;
rez.W = W;
rez.U = U;
rez.mu = mu;
rez.dWU = final_temps;
rez.ops = ops;
rez.xcoords = allrez{1}.xcoords;
rez.ycoords = allrez{1}.ycoords;
rez.Wrot = allrez{1}.Wrot;
rez.st3 = st4;
rez.chunckInds = chunckInds;
[~, iNgsort] = sort(rez.simScore, 1, 'descend');
maskTT = zeros(size(iNgsort,1), 'single');
rez.iNeigh = iNgsort(1:rez.ops.nNeigh, :);
for i = 1:size(iNgsort,1)
maskTT(rez.iNeigh(:,i),i) = 1;
end
rez.cProj = zeros(size(rez.st3,1),rez.ops.nNeigh,'single');
% sort best channels
[~, iNch] = sort(abs(rez.U(:,:,1)), 1, 'descend');
maskPC = zeros(rez.ops.Nchan, size(iNgsort,1), 'single');
rez.iNeighPC = iNch(1:rez.ops.nNeighPC, :);
for i = 1:size(iNgsort,1)
maskPC(rez.iNeighPC(:,i),i) = 1;
end
rez.cProjPC = zeros(size(rez.st3,1),3,rez.ops.nNeigh,'single');
end