-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFull_Ensemble.py
295 lines (211 loc) · 9.38 KB
/
Full_Ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
import math;
import pickle
import pandas as pd
from collections import OrderedDict
import importlib
import time
import timeit
import torch
import torch.nn
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader,TensorDataset
from torchvision.models.resnet import *
from torch.autograd import Variable
from torchvision import transforms
import NNs
from NNs import *
importlib.reload(NNs)
import math
from NNs import ResNetDynamic, FeatureBoostedCNN
import glob
import cv2
from torchsummary import summary
from Preprocessing import *
from Preprocessing import ListsTrainDataset, ListsTestDataset
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import sys
print(sys.path)
# ## LOAD DATA
original_train_images = pickle.load(open("pkl/train_padded64.pkl", "rb"))
# train_images = train_images[:1000]
original_labels = pickle.load(open("pkl/train_labels.pkl", "rb"))
kaggle_test_images = pickle.load(open("pkl/test_padded64.pkl", "rb"))
kaggle_test_filenames = pickle.load(open("pkl/test_filenames.pkl", "rb"))
# ## Load handcrafted features
original_haralick = pickle.load(open("features/train_haralick.pkl", "rb"))
original_moments = pickle.load(open("features/train_moments.pkl", "rb"))
original_sizes = pickle.load(open("features/train_sizes.pkl", "rb"))
kaggle_test_haralick = pickle.load(open("features/test_haralick.pkl", "rb"))
kaggle_test_moments = pickle.load(open("features/test_moments.pkl", "rb"))
kaggle_test_sizes = pickle.load(open("features/test_sizes.pkl", "rb"))
train_handcrafted_features = np.concatenate([original_haralick, original_moments, original_sizes], axis =1)
kaggle_test_handcrafted_features = np.concatenate([kaggle_test_haralick, kaggle_test_moments, kaggle_test_sizes], axis =1)
# ## Split to train test mine
test_set_mine_indexes = pickle.load(open("pkl/test_set_mine_indexes.pkl", "rb"))
train_images = [i for j, i in enumerate(original_train_images) if j not in test_set_mine_indexes]
train_labels = [i for j, i in enumerate(original_labels) if j not in test_set_mine_indexes]
train_handcrafted = [i for j, i in enumerate(train_handcrafted_features) if j not in test_set_mine_indexes]
#
test_mine_images = [i for j, i in enumerate(original_train_images) if j in test_set_mine_indexes]
test_mine_labels = [i for j, i in enumerate(original_labels) if j in test_set_mine_indexes]
test_mine_handcrafted = [i for j, i in enumerate(train_handcrafted_features) if j in test_set_mine_indexes]
X_train_cnn, y_train_cnn = train_images, train_labels
X_val_cnn, y_val_cnn = test_mine_images, test_mine_labels
# ## CNN
pretrained = resnet50(pretrained = True)
cnn = ResNetDynamic(pretrained.block, pretrained.layers, num_layers = 2, pretrained_nn = None)
#
cnn_dict = torch.load('models/all_elements_trained_model_90_new.pt', map_location={"cuda:1": "cuda:0", "cuda:2": "cuda:0"})['state_dict']
cnn.load_state_dict(cnn_dict)
cnn = cnn.eval().cuda()
del(pretrained)
feature_extractor_cnn = nn.Sequential(*list(cnn.children())[:-2]).eval().cuda()
mean_norm_test, std_norm_test = calc_means_stds(train_images)
def get_cnn_features(feature_extractor, model, x):
features = ...
mean_norm_test, std_norm_test = calc_means_stds(train_images)
test_transforms = transforms. Compose([
transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize(mean=[mean_norm_test],
std =[std_norm_test])
])
total_features = torch.Tensor().float().cpu()
total_predicted = torch.Tensor().long()
total_probabilities = torch.Tensor().float()
cnn_dataset = ListsTestDataset(x, transform = test_transforms)
cnn_loader = torch.utils.data.DataLoader(cnn_dataset, batch_size = 32, shuffle = False)
predictions = []
for i, images in enumerate(cnn_loader):
images = Variable(images, requires_grad=False).cuda()
outputs = model(images).cuda()
_, predicted = torch.max(outputs.data, 1)
features = feature_extractor(images)
total_features = torch.cat((total_features, features.detach().cpu()))
total_predicted = torch.cat((total_predicted, predicted.cpu().long()))
total_probabilities = torch.cat((total_probabilities,(torch.nn.Softmax()(outputs)).detach().cpu()))
return (total_features.numpy(), total_predicted.numpy(), total_probabilities.numpy())
cnn_train_features, cnn_train_predictions, cnn_train_probabilities = get_cnn_features(feature_extractor_cnn, cnn, X_train_cnn)
cnn_val_features, cnn_val_predictions, cnn_val_probabilities = get_cnn_features(feature_extractor_cnn, cnn, X_val_cnn)
cnn_kaggle_features, cnn_kaggle_predictions, cnn_kaggle_probabilities = get_cnn_features(feature_extractor_cnn, cnn, kaggle_test_images)
# ## Scale and Preprocess for Ensemble
scaler = StandardScaler()
scaled_handcrafted_train = scaler.fit_transform(train_handcrafted)
scaled_handcrafted_val = scaler.fit_transform(test_mine_handcrafted)
scaled_handcrafted_kaggle = scaler.fit_transform(kaggle_test_handcrafted_features)
scaled_cnn_train_features = scaler.fit_transform(cnn_train_features)
scaled_cnn_val_features = scaler.fit_transform(cnn_val_features)
scaled_cnn_kaggle_features = scaler.fit_transform(cnn_kaggle_features)
# ### Setup Features DF
feature_names = []
for i in range(original_haralick.shape[1]):
feature_names.append("haralick"+str(i))
for i in range(original_moments.shape[1]):
feature_names.append("moments"+str(i))
for i in range(original_sizes.shape[1]):
feature_names.append("sizes"+str(i))
for i in range(scaled_cnn_train_features.shape[1]):
feature_names.append("deep"+str(i))
##concat handcrafted and deep features
NP_FEATURES_TRAIN = np.concatenate([scaled_handcrafted_train, scaled_cnn_train_features], axis = 1)
NP_FEATURES_VAL = np.concatenate([scaled_handcrafted_val, scaled_cnn_val_features], axis = 1)
NP_FEATURES_KAGGLE = np.concatenate([scaled_handcrafted_kaggle, scaled_cnn_kaggle_features], axis = 1)
y_train = train_labels
y_test = test_mine_labels
X_train = pd.DataFrame(NP_FEATURES_TRAIN, columns = feature_names)
X_test = pd.DataFrame(NP_FEATURES_VAL, columns = feature_names)
X_kaggle = pd.DataFrame(NP_FEATURES_KAGGLE, columns = feature_names)
# ## PCA
pca = PCA(n_components=40)
concatenated = np.concatenate([X_train, X_test], axis =0)
concatenated = np.concatenate([concatenated, X_kaggle], axis =0)
principalComponents = pca.fit_transform(concatenated)
principalComponents.shape
x_train = principalComponents[:len(X_train)]
x_test = principalComponents[len(X_train):len(X_train)+len(X_test)]
x_kaggle = principalComponents[len(X_train)+len(X_test):]
## Base Learners
import sklearn
import xgboost as xgb
from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier,
GradientBoostingClassifier, ExtraTreesClassifier)
from sklearn.svm import SVC
from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
def get_results(model, train_data, test_data, training_labels, test_labels):
y_pred_train = model.predict(train_data)
y_pred_test = model.predict(test_data)
print("Training Accuracy: " +str(accuracy_score(training_labels, y_pred_train)))
print("Validation Accuracy: " +str(accuracy_score(test_labels, y_pred_test)))
####Weak Classifiers Params
rf_params = {
'n_jobs': -1,
'n_estimators': 500,
'warm_start': True,
#'max_features': 0.2,
'max_depth': 5,
'min_samples_leaf': 2,
'max_features' : 0.2,
'verbose': 0
}
# Extra Trees Parameters
et_params = {
'n_jobs': -1,
'n_estimators':500,
#'max_features': 0.5,
'max_depth': 8,
'min_samples_leaf': 2,
'verbose': 0
}
# AdaBoost parameters
ada_params = {
'n_estimators': 500,
'learning_rate' : 0.2
}
# Gradient Boosting parameters
gb_params = {
'n_estimators': 500,
#'max_features': 0.2,
'max_depth': 5,
'min_samples_leaf': 2,
'verbose': 0
}
# Support Vector Classifier parameters
svc_params = {
'kernel' : 'linear',
'C' : 0.025
}
#DTree
dt_model = DecisionTreeClassifier(random_state=1)
dt_model.fit(x_train, y_train)
get_results(dt_model, x_train, x_test, y_train, y_test)
##RandomForest
rf_model = RandomForestClassifier(**rf_params)
rf_model.fit(x_train, y_train)
get_results(rf_model, x_train, x_test, y_train, y_test)
elapsed_time = time.time() - start_time
print("elapsed time: "+str(elapsed_time))
##XGBoost
xgb_model = XGBClassifier(nthread=-1, learning_rate = 0.01, min_child_weight = 0.01, max_depth=5, )
xgb_model.fit(x_train, y_train)
get_results(xgb_model, x_train, x_test, y_train, y_test)
##ExtraTrees
et_model = ExtraTreesClassifier(**et_params)
et_model.fit(x_train, y_train)
get_results(et_model, x_train, x_test, y_train, y_test)
##SVM
svm = SVC(**svc_params)
svm.fit(scaler.fit_transform(x_train), y_train)
get_results(svm, scaler.fit_transform(x_train), scaler.fit_transform(x_test), y_train, y_test)
from sklearn.ensemble import VotingClassifier
eclf = VotingClassifier(estimators=[('dt', dt_model), ('et_model', clf2), ('xgb', XGBClassifier), ('ada', XGBClassifier)], voting='soft')
svm_results = svm.predict(scaler.fit_transform(x_kaggle))
best_results = pd.read_csv('best_results.csv')
best_results['predicted']=svm_results
best_results = best_results.drop(columns=['class'])
final = best_results.rename(index=str, columns={"predicted": "class"})
final.to_csv('results.csv',sep = ',', index = False)