-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquestion42.py
51 lines (34 loc) · 1.58 KB
/
question42.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
'''
Long version of simple neural network
https://medium.com/technology-invention-and-more/how-to-build-a-simple-neural-network-in-9-lines-of-python-code-cc8f23647ca1
'''
# not working
from numpy import exp, dot, array, random
class NeuralNetwork():
def __init__(self):
random.seed(1)
self.synaptic_weights = 2 * random.random((3, 1)) - 1
def __sigmoid(self, x):
return 1 / (1 + exp(-x))
def __sigmoid_derivative(self, x):
return x * (1 - x)
def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iteration in number_of_training_iterations:
output = self.think(training_set_inputs)
error = training_set_inputs - output
adjustments = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))
self.synaptic_weights += adjustments
def think(self, inputs):
return self.__sigmoid(dot(inputs, self.synaptic_weights))
if __name__ == "__main__":
neural_network = NeuralNetwork()
print("Random starting synaptic weights : ")
print(neural_network.synaptic_weights)
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
number_of_training_iterations = 10000
neural_network.train(training_set_inputs, training_set_outputs, number_of_training_iterations)
print("New synaptic weights after training: ")
print(neural_network.synaptic_weights)
print("Considering new situation [1, 0, 0] -> ?: ")
print(neural_network.think(array([1, 0, 0])))