-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStageII.py
295 lines (234 loc) · 11 KB
/
StageII.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
import scipy.misc
import tensorflow as tf
import tensorflow.contrib.gan as tfgan
import tensorflow.contrib.slim as slim
from PIL import Image
from tensorflow.contrib.gan.python import namedtuples
import StageI
import configuration
import data_provider
tf.reset_default_graph()
conf = configuration.config()
initializer = None
batch_norm_params = {
'decay': conf.batch_norm_decay,
'epsilon': conf.epsilon,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
'is_training': conf.is_training,
'zero_debias_moving_mean': True
}
# 训练参数
global_step = tf.train.get_or_create_global_step()
generator_loss_fn = tfgan.losses.modified_generator_loss
discriminator_loss_fn = tfgan.losses.modified_discriminator_loss
weights_initializer = tf.initializers.random_normal(mean=0, stddev=0.02)
gen_lr = tf.train.exponential_decay(conf.gen_lr, global_step, conf.decay_steps, 0.5, "generator_learning_rate")
tf.summary.scalar("gen_learning_rate", gen_lr)
generator_optimizer = tf.train.AdamOptimizer(learning_rate=gen_lr, beta1=0.5)
dis_lr = tf.train.exponential_decay(conf.dis_lr, global_step, conf.decay_steps, 0.5, "discriminator_learning_rate")
tf.summary.scalar("dis_learning_rate", dis_lr)
discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=dis_lr)
# 产生分布的均值与方差
def CAnet(embedding):
x = slim.fully_connected(embedding, conf.CAnet_dim * 2, activation_fn=tf.nn.leaky_relu)
mean = x[:, :conf.CAnet_dim]
log_sigma = x[:, conf.CAnet_dim:]
return mean, log_sigma
# KL散度的正则化项
def KL_loss(mu, log_sigma):
with tf.name_scope("KL_divergence"):
loss = -log_sigma + .5 * (-1 + tf.exp(2. * log_sigma) + tf.square(mu))
loss = tf.reduce_mean(loss, name="KL_loss")
return loss
def residual_blocks(x):
node0_0 = x
with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params,
weights_initializer=weights_initializer):
node0_1 = slim.conv2d(x, conf.gf_dim * 4, 3)
node0_1 = slim.conv2d(node0_1, conf.gf_dim * 4, 3, activation_fn=None)
return tf.nn.relu(tf.add(node0_0, node0_1))
def generator_fn(inputs):
# inputs is a 2-tuple (noise,embedding)
gen_img = inputs["gen_img"]
embedding = inputs["caption"]
mean, log_sigma = CAnet(embedding)
c = mean + tf.exp(log_sigma) * tf.truncated_normal(shape=tf.shape(mean))
s16 = int(conf.small_image_size / 16)
s8 = int(conf.small_image_size / 8)
s4 = int(conf.small_image_size / 4)
s2 = int(conf.small_image_size / 2)
# encoding gen_image
x = slim.conv2d(gen_img, conf.gf_dim, 3, weights_initializer=weights_initializer)
with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params,
weights_initializer=weights_initializer):
# 64*64*3
x = slim.conv2d(x, conf.gf_dim * 2, 4, 2)
image_encode = slim.conv2d(x, conf.gf_dim * 4, 4, 2)
# 16*16*512
# spatial replication
text_encode = tf.expand_dims(tf.expand_dims(c, 1), 1)
text_encode = tf.tile(text_encode, [1, s4, s4, 1])
merge = tf.concat([text_encode, image_encode], 3)
x = slim.conv2d(merge, conf.gf_dim * 4, 3)
# 16*16*512
x = residual_blocks(x)
x = residual_blocks(x)
x = residual_blocks(x)
x = residual_blocks(x)
# upsampling
with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params,
weights_initializer=weights_initializer):
x = tf.image.resize_nearest_neighbor(x, [s2, s2])
x = slim.conv2d(x, conf.gf_dim * 2, 3)
x = tf.image.resize_nearest_neighbor(x, [conf.small_image_size, conf.small_image_size])
x = slim.conv2d(x, conf.gf_dim, 3)
x = tf.image.resize_nearest_neighbor(x, [2 * conf.small_image_size, 2 * conf.small_image_size])
x = slim.conv2d(x, conf.gf_dim // 2, 3)
x = tf.image.resize_nearest_neighbor(x, [conf.large_image_size, conf.large_image_size])
x = slim.conv2d(x, conf.gf_dim // 4, 3)
# 256*256*32
x = slim.conv2d(x, 3, 3, activation_fn=tf.nn.tanh)
# 256*256*3
return x
def discriminator_fn(img, conditioning, weight_decay=2.5e-5):
embedding = conditioning["caption"]
# encoding image
# (256,256,3)
node1_0 = slim.conv2d(img, conf.df_dim, 4, 2, activation_fn=tf.nn.leaky_relu,
weights_initializer=weights_initializer)
with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params,
weights_initializer=weights_initializer):
node1_0 = slim.conv2d(node1_0, conf.df_dim * 2, 4, 2, activation_fn=tf.nn.leaky_relu)
node1_0 = slim.conv2d(node1_0, conf.df_dim * 4, 4, 2, activation_fn=tf.nn.leaky_relu)
node1_0 = slim.conv2d(node1_0, conf.df_dim * 8, 4, 2, activation_fn=tf.nn.leaky_relu)
node1_0 = slim.conv2d(node1_0, conf.df_dim * 16, 4, 2, activation_fn=tf.nn.leaky_relu)
node1_0 = slim.conv2d(node1_0, conf.df_dim * 32, 4, 2, activation_fn=tf.nn.leaky_relu)
# 4*4*2048
node1_0 = slim.conv2d(node1_0, conf.df_dim * 16, 1, activation_fn=tf.nn.leaky_relu)
node1_0 = slim.conv2d(node1_0, conf.df_dim * 8, 1, activation_fn=None)
# 4*4*512
node1_1 = slim.conv2d(node1_0, conf.df_dim * 2, 1, activation_fn=tf.nn.leaky_relu)
node1_1 = slim.conv2d(node1_1, conf.df_dim * 2, 3, activation_fn=tf.nn.leaky_relu)
node1_1 = slim.conv2d(node1_1, conf.df_dim * 8, 3, activation_fn=None)
# (4,4,512)
node1 = tf.add(node1_0, node1_1, "d_node1")
image_encode = tf.nn.leaky_relu(node1)
# text embedding compress
text_encode = slim.fully_connected(embedding, conf.CAnet_dim, activation_fn=tf.nn.leaky_relu)
# (:,128)
text_encode = tf.expand_dims(tf.expand_dims(text_encode, 1), 1)
s16 = int(conf.small_image_size / 16)
text_encode = tf.tile(text_encode, [1, s16, s16, 1])
# (:,4,4,128)
merge = tf.concat([text_encode, image_encode], 3)
# [1,1]卷积核学习特征
feat = slim.conv2d(merge, conf.df_dim * 8 + conf.CAnet_dim, 1, normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params, activation_fn=tf.nn.leaky_relu,
weights_initializer=weights_initializer)
output = slim.conv2d(feat, 1, s16, s16, activation_fn=None, weights_initializer=weights_initializer)
return output
def start_train():
stageI_train_input = data_provider.get_stage_I_train_input_fn()
condition, real_image = stageI_train_input()
stageI_gan_model, _ = StageI.get_model_and_loss(condition, real_image)
conf.is_training = True
need_to_init = False
condition, real_image = data_provider.get_stage_II_train_input_fn()()
with tf.Session() as sess:
# get_saver
saver = tf.train.Saver()
if tf.train.get_checkpoint_state(conf.stageII_model_path):
saver.restore(sess, tf.train.latest_checkpoint(conf.stageII_model_path))
else:
if not tf.train.get_checkpoint_state(conf.stageI_model_path):
raise FileNotFoundError("StageI model not found!")
else:
saver.restore(sess, tf.train.latest_checkpoint(conf.stageI_model_path))
sI_var = tf.global_variables()
need_to_init = True
tf.assign(global_step, 0)
with tf.variable_scope('Generator', reuse=True):
gen_img = stageI_gan_model.generator_fn(condition)
# StageI不参与训练
param = tf.get_collection_ref(tf.GraphKeys.UPDATE_OPS)
del param[:]
gen_input = {"gen_img": gen_img, "caption": condition["caption"]}
stageII_gan_model, gan_loss = get_model_and_loss(gen_input, real_image)
gan_train_ops = tfgan.gan_train_ops(
model=stageII_gan_model,
loss=gan_loss,
generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer
)
if need_to_init:
var_to_init = [x for x in tf.global_variables() if x not in sI_var]
sess.run(tf.initialize_variables(var_to_init))
train_setp_fn = tfgan.get_sequential_train_steps(namedtuples.GANTrainSteps(1, 10))
train_writer = tf.summary.FileWriter(conf.stageII_model_path, sess.graph)
merged = tf.summary.merge_all()
step = sess.run(global_step)
with slim.queues.QueueRunners(sess):
for _ in range(conf.training_steps):
# test data
data = sess.run(real_image)
data = visualize_data(data)
img = Image.fromarray(data, 'RGB')
img.show()
data = sess.run(stageII_gan_model.generator_inputs)
print(data)
#
step = step + 1
cur_loss, _ = train_setp_fn(sess, gan_train_ops, global_step, {})
tf.summary.scalar("loss", cur_loss)
if step % 50 == 0:
sumary = sess.run(merged)
train_writer.add_summary(sumary, step)
# save var
if step % 200 == 0:
saver.save(sess, conf.stageI_model_path, global_step)
# visualize data
if step % 1000 == 0:
gen_data = sess.run(gan_model.generated_data)
datas = visualize_data(gen_data)
scipy.misc.toimage(datas).save('image/{}.jpg'.format(step))
def visualize_data(gen_data):
batch_size = gen_data.shape[0]
datas = np.squeeze(np.split(gen_data, batch_size, 0))
datas = [np.concatenate(datas[i:i + 8]) for i in range(0, 64, 8)]
datas = np.concatenate(datas, axis=1)
datas = (datas + 1) / 2 * 255
datas = np.round(datas)
datas = datas.astype(np.uint8)
return datas
def get_model_and_loss(condition, real_image):
gan_model = tfgan.gan_model(
generator_fn=generator_fn,
discriminator_fn=discriminator_fn,
real_data=real_image,
generator_inputs=condition,
generator_scope="stageII_generator",
discriminator_scope="stageII_discriminatior"
)
gan_loss = tfgan.gan_loss(
gan_model,
generator_loss_fn=generator_loss_fn,
discriminator_loss_fn=discriminator_loss_fn
)
return gan_model, gan_loss
def start_predict():
conf.is_training = False
predict_input = data_provider.get_stage_I_predict_input_fn()
condition, real_image = predict_input()
gan_model, _ = get_model_and_loss(condition, real_image)
with tf.Session() as sess:
# get_saver
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(conf.stageI_model_path))
with tf.variable_scope('Generator', reuse=True):
pre_img = gan_model.generator_fn(condition)
imgs = sess.run(pre_img)
datas = visualize_data(imgs)
scipy.misc.toimage(datas).save('output/output_img.jpg')
if __name__ == '__main__':
start_train()