-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgen_sensitivity_results.py
121 lines (90 loc) · 4.12 KB
/
gen_sensitivity_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pandas as pd
from pathlib import Path
BASE_FOLDER = Path('/home/diegopc/projects/robot_formation_in_turbulence/results/sensitivity/formation')
BOUNDS = [-5, 5]
DT = 0.066
def plot_error(data, title, labels, name, results_folder, y_label='', y_lim=None, legend_dict=None, colors=None, smooth=False):
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.arange(data.shape[-1]) * DT
num_plots = data.shape[1]
# colors = cm.rainbow(np.linspace(0, 1, eval_data.shape[0]))
if colors is None:
colors = cm.Set1(np.linspace(0, 1, data.shape[1]))
#colors = cm.Dark2(np.linspace(0, 1, data.shape[1]))
for i in range(num_plots):
mean_data = data.mean(axis=0)
sdt_data = data.std(axis=0)
if smooth:
#apply_along_axis(func1d, axis, arr, *args, **kwargs)
pass
#import pdb
#pdb.set_trace()
ax.plot(x, mean_data[i, :], label=labels[i], color=colors[i])
ax.fill_between(x, mean_data[i] - sdt_data[i], mean_data[i] + sdt_data[i], color=colors[i],
alpha=0.1)
if legend_dict is not None:
#ax.legend(loc=legend_dict['loc'], bbox_to_anchor=(1.1, 1.05), prop={'size': legend_dict['size']})
ax.legend(loc=legend_dict['loc'], bbox_to_anchor=legend_dict['anchor'], prop={'size': legend_dict['size']})
ax.grid()
ax.set_xlabel('Time (s)')
ax.set_ylabel(y_label)
if y_lim is not None:
ax.set_ylim(y_lim[0], y_lim[1])
ax.set_title(f'{title}')
fig.savefig(results_folder / f'{name}.png')
plt.close(fig)
# robot error figure
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.boxplot(np.transpose(data, axes=[0, 2, 1]).reshape(-1, num_plots))
ax.legend(loc='upper right', prop={'size': 6})
ax.grid()
ax.set_ylim(0.05 * BOUNDS[0], 0.3 * BOUNDS[1])
ax.set_title(f'{title} per robot')
fig.savefig(results_folder / f'{name}_per_robot.png')
plt.close(fig)
if __name__ == '__main__':
# Train test folders
formations = list(range(3, 9))
formation_folders = [[BASE_FOLDER / f'train_{i}x{i}_test_{j}x{j}' for j in formations] for i in formations]
data_dict = {k: [] for k in np.load(formation_folders[0][0] / 'eval_result_data.npy', allow_pickle=True).item().keys()}
for i in range(len(formations)):
for k, v in data_dict.items():
data_dict[k].append([])
for j in range(len(formations)):
bs_folder = formation_folders[i][j]
bs_data = np.load(bs_folder / 'eval_result_data.npy', allow_pickle=True).item()
for k, v in bs_data.items():
data_dict[k][i].append(v)
if i >= 1:
break
for metric in ['position_error', 'velocity_error', 'velocity_dir_error']:
data = data_dict[metric]
table = np.zeros((len(formations), len(formations)))
for i in range(len(formations)):
for j in range(len(formations)):
table[i, j] = data[i][j].mean()
if i >= 1:
break
table = pd.DataFrame(table)
table['Training team size'] = np.array(formations)**2
with open(BASE_FOLDER / 'training_test.tex', 'w') as tb:
tb.write(table.to_latex(index=False))
import pdb
pdb.set_trace()
num_bs, num_eval, num_robots, total_t = data.shape
data = np.transpose(data[..., [6, 7, 8, 11, 12, 13, 16, 17, 18], :], (1, 2, 0, 3)).reshape(-1, num_bs, total_t)
#data = np.transpose(data[..., 12, :], (1, 0, 2))[:15]
if metric == 'position_error':
'''plot_error(
data, title=metric.capitalize().replace('_', ' '), name=metric, labels=list(ablation_folders.keys()),
y_lim=[-0.02, 1.4], y_label='Error (m)',
results_folder=BASE_FOLDER,
legend_dict={'loc': 'upper left', 'size': 8, 'anchor': (0.01, 0.99)},
colors=['red', 'blue', 'green', 'orange', 'brown', 'purple'],
)'''
#table = pd.DataFrame(data.mean(axis=0)[:, [0, 150, 300, 450, 600, 750, 899]])