-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsolver.py
368 lines (302 loc) · 16.5 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from model import Generator
from model import Discriminator
from model import DomainClassifier
from torch.autograd import Variable
from torchvision.utils import save_image
import torch
import torch.nn.functional as F
import numpy as np
import os
from os.path import join, basename, dirname, split
import time
import datetime
from data_loader import to_categorical
import librosa
from utils import *
from tqdm import tqdm
class Solver(object):
"""Solver for training and testing StarGAN."""
def __init__(self, train_loader, test_loader, config):
"""Initialize configurations."""
# Data loader.
self.train_loader = train_loader
self.test_loader = test_loader
self.sampling_rate = config.sampling_rate
# Model configurations.
self.num_speakers = config.num_speakers
self.lambda_cls = config.lambda_cls
self.lambda_rec = config.lambda_rec
self.lambda_gp = config.lambda_gp
# Training configurations.
self.batch_size = config.batch_size
self.num_iters = config.num_iters
self.num_iters_decay = config.num_iters_decay
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.c_lr = config.c_lr
self.n_critic = config.n_critic
self.beta1 = config.beta1
self.beta2 = config.beta2
self.resume_iters = config.resume_iters
# Test configurations.
self.test_iters = config.test_iters
# Miscellaneous.
self.use_tensorboard = config.use_tensorboard
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Directories.
self.log_dir = config.log_dir
self.sample_dir = config.sample_dir
self.model_save_dir = config.model_save_dir
# Step size.
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
self.lr_update_step = config.lr_update_step
# Build the model and tensorboard.
self.build_model()
if self.use_tensorboard:
self.build_tensorboard()
def build_model(self):
"""Create a generator and a discriminator."""
self.G = Generator(num_speakers=self.num_speakers)
self.D = Discriminator(num_speakers=self.num_speakers)
self.C = DomainClassifier()
self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
self.c_optimizer = torch.optim.Adam(self.C.parameters(), self.c_lr, [self.beta1, self.beta2])
self.print_network(self.G, 'G')
self.print_network(self.D, 'D')
self.print_network(self.C, 'C')
self.G.to(self.device)
self.D.to(self.device)
self.C.to(self.device)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, resume_iters):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}...'.format(resume_iters))
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters))
C_path = os.path.join(self.model_save_dir, '{}-C.ckpt'.format(resume_iters))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
self.C.load_state_dict(torch.load(C_path, map_location=lambda storage, loc: storage))
def build_tensorboard(self):
"""Build a tensorboard logger."""
from logger import Logger
self.logger = Logger(self.log_dir)
def update_lr(self, g_lr, d_lr, c_lr):
"""Decay learning rates of the generator and discriminator."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
for param_group in self.c_optimizer.param_groups:
param_group['lr'] = c_lr
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
self.c_optimizer.zero_grad()
def denorm(self, x):
"""Convert the range from [-1, 1] to [0, 1]."""
out = (x + 1) / 2
return out.clamp_(0, 1)
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def label2onehot(self, labels, dim):
"""Convert label indices to one-hot vectors."""
batch_size = labels.size(0)
out = torch.zeros(batch_size, dim)
out[np.arange(batch_size), labels.long()] = 1
return out
def sample_spk_c(self, size):
spk_c = np.random.randint(0, self.num_speakers, size=size)
spk_c_cat = to_categorical(spk_c, self.num_speakers)
return torch.LongTensor(spk_c), torch.FloatTensor(spk_c_cat)
def classification_loss(self, logit, target):
"""Compute softmax cross entropy loss."""
return F.cross_entropy(logit, target)
def load_wav(self, wavfile, sr=16000):
wav, _ = librosa.load(wavfile, sr=sr, mono=True)
return wav_padding(wav, sr=16000, frame_period=5, multiple = 4)
def train(self):
"""Train StarGAN."""
# Set data loader.
train_loader = self.train_loader
data_iter = iter(train_loader)
# Read a batch of testdata
test_wavfiles = self.test_loader.get_batch_test_data(batch_size=4)
test_wavs = [self.load_wav(wavfile) for wavfile in test_wavfiles]
# Determine whether do copysynthesize when first do training-time conversion test.
cpsyn_flag = [True, False][0]
# f0, timeaxis, sp, ap = world_decompose(wav = wav, fs = sampling_rate, frame_period = frame_period)
# Learning rate cache for decaying.
g_lr = self.g_lr
d_lr = self.d_lr
c_lr = self.c_lr
# Start training from scratch or resume training.
start_iters = 0
if self.resume_iters:
print("resuming step %d ..."% self.resume_iters)
start_iters = self.resume_iters
self.restore_model(self.resume_iters)
# Start training.
print('Start training...')
start_time = time.time()
for i in range(start_iters, self.num_iters):
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch labels.
try:
mc_real, spk_label_org, spk_c_org = next(data_iter)
except:
data_iter = iter(train_loader)
mc_real, spk_label_org, spk_c_org = next(data_iter)
mc_real.unsqueeze_(1) # (B, D, T) -> (B, 1, D, T) for conv2d
# Generate target domain labels randomly.
# spk_label_trg: int, spk_c_trg:one-hot representation
spk_label_trg, spk_c_trg = self.sample_spk_c(mc_real.size(0))
mc_real = mc_real.to(self.device) # Input mc.
spk_label_org = spk_label_org.to(self.device) # Original spk labels.
spk_c_org = spk_c_org.to(self.device) # Original spk acc conditioning.
spk_label_trg = spk_label_trg.to(self.device) # Target spk labels for classification loss for G.
spk_c_trg = spk_c_trg.to(self.device) # Target spk conditioning.
# =================================================================================== #
# 2. Train the discriminator #
# =================================================================================== #
# Compute loss with real mc feats.
out_src = self.D(mc_real,spk_c_org)
#print("output of the discriminator for real data")
#print(out_src.data.cpu().numpy())
d_loss_real = - torch.mean(out_src)
out_cls_spks = self.C(mc_real)
c_loss_cls_spks = self.classification_loss(out_cls_spks, spk_label_org)
c_loss_cls_spks.backward()
self.c_optimizer.step()
# Compute loss with fake mc feats.
mc_fake = self.G(mc_real, spk_c_trg)
out_src = self.D(mc_fake.detach(),spk_c_trg)
#print("output of the discriminator for fake data")
#print(out_src.data.cpu().numpy())
d_loss_fake = torch.mean(out_src)
# Compute loss for gradient penalty.
alpha = torch.rand(mc_real.size(0), 1, 1, 1).to(self.device)
x_hat = (alpha * mc_real.data + (1 - alpha) * mc_fake.data).requires_grad_(True)
out_src = self.D(x_hat,spk_c_trg)
d_loss_gp = self.gradient_penalty(out_src, x_hat)
out_cls_spks = self.C(mc_fake)
d_loss_cls_spks = self.classification_loss(out_cls_spks, spk_label_trg)
# Backward and optimize.
d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls_spks + self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging.
loss = {}
loss['D/loss_real'] = d_loss_real.item()
loss['D/loss_fake'] = d_loss_fake.item()
loss['D/loss_cls_spks'] = d_loss_cls_spks.item()
loss['D/loss_gp'] = d_loss_gp.item()
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
if (i+1) % self.n_critic == 0:
# Original-to-target domain.
mc_fake = self.G(mc_real, spk_c_trg)
out_src = self.D(mc_fake,spk_c_trg)
g_loss_fake = - torch.mean(out_src)
out_cls_spks = self.C(mc_real)
g_loss_cls_spks = self.classification_loss(out_cls_spks, spk_label_org)
# Target-to-original domain.
mc_reconst = self.G(mc_fake, spk_c_org)
g_loss_rec = torch.mean(torch.abs(mc_real - mc_reconst))
# Original-to-Original domain(identity).
mc_reconst_id = self.G(mc_real, spk_c_org)
g_loss_id_rec = torch.mean(torch.abs(mc_real - mc_reconst_id))
# Backward and optimize.
g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls_spks + self.lambda_rec * g_loss_id_rec
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging.
loss['G/loss_fake'] = g_loss_fake.item()
loss['G/loss_rec'] = g_loss_rec.item()
loss['G/loss_cls_spks'] = g_loss_cls_spks.item()
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i+1) % self.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
if self.use_tensorboard:
for tag, value in loss.items():
self.logger.scalar_summary(tag, value, i+1)
if (i+1) % self.sample_step == 0:
sampling_rate=16000
num_mcep=36
frame_period=5
with torch.no_grad():
for idx, wav in tqdm(enumerate(test_wavs)):
wav_name = basename(test_wavfiles[idx])
# print(wav_name)
f0, timeaxis, sp, ap = world_decompose(wav=wav, fs=sampling_rate, frame_period=frame_period)
f0_converted = pitch_conversion(f0=f0,
mean_log_src=self.test_loader.logf0s_mean_src, std_log_src=self.test_loader.logf0s_std_src,
mean_log_target=self.test_loader.logf0s_mean_trg, std_log_target=self.test_loader.logf0s_std_trg)
coded_sp = world_encode_spectral_envelop(sp=sp, fs=sampling_rate, dim=num_mcep)
coded_sp_norm = (coded_sp - self.test_loader.mcep_mean_src) / self.test_loader.mcep_std_src
coded_sp_norm_tensor = torch.FloatTensor(coded_sp_norm.T).unsqueeze_(0).unsqueeze_(1).to(self.device)
conds = torch.FloatTensor(self.test_loader.spk_c_trg).to(self.device)
# print(conds.size())
coded_sp_converted_norm = self.G(coded_sp_norm_tensor, conds).data.cpu().numpy()
coded_sp_converted = np.squeeze(coded_sp_converted_norm).T * self.test_loader.mcep_std_trg + self.test_loader.mcep_mean_trg
coded_sp_converted = np.ascontiguousarray(coded_sp_converted)
# decoded_sp_converted = world_decode_spectral_envelop(coded_sp = coded_sp_converted, fs = sampling_rate)
wav_transformed = world_speech_synthesis(f0=f0_converted, coded_sp=coded_sp_converted,
ap=ap, fs=sampling_rate, frame_period=frame_period)
librosa.output.write_wav(
join(self.sample_dir, str(i+1)+'-'+wav_name.split('.')[0]+'-vcto-{}'.format(self.test_loader.trg_spk)+'.wav'), wav_transformed, sampling_rate)
if cpsyn_flag:
wav_cpsyn = world_speech_synthesis(f0=f0, coded_sp=coded_sp,
ap=ap, fs=sampling_rate, frame_period=frame_period)
librosa.output.write_wav(join(self.sample_dir, 'cpsyn-'+wav_name), wav_cpsyn, sampling_rate)
cpsyn_flag = False
# Save model checkpoints.
if (i+1) % self.model_save_step == 0:
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1))
C_path = os.path.join(self.model_save_dir, '{}-C.ckpt'.format(i+1))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
torch.save(self.C.state_dict(), C_path)
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
# Decay learning rates.
if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay):
g_lr -= (self.g_lr / float(self.num_iters_decay))
d_lr -= (self.d_lr / float(self.num_iters_decay))
c_lr -= (self.c_lr / float(self.num_iters_decay))
self.update_lr(g_lr, d_lr, c_lr)
print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))