From b2d2697251eb2f4a7a75d758bfa3b90cb718d768 Mon Sep 17 00:00:00 2001 From: DinoBektesevic <dinob@uw.edu> Date: Mon, 19 Aug 2024 13:03:59 -0700 Subject: [PATCH] fixup --- pyproject.toml | 3 + src/kbmod/mocking/__init__.py | 2 +- src/kbmod/mocking/callbacks.py | 68 ++- src/kbmod/mocking/catalogs.py | 536 ++++++++++++++---- src/kbmod/mocking/{fits_data.py => data.py} | 476 +++++++++++----- src/kbmod/mocking/dump_headers.py | 309 ++++++++++ src/kbmod/mocking/fits.py | 173 +++++- src/kbmod/mocking/headers.py | 408 +++++++++++-- .../{data => }/headers_archive.tar.bz2 | Bin src/kbmod/mocking/utils.py | 30 +- tests/dump_headers.py | 500 ---------------- tests/test_end_to_end.py | 89 ++- tests/test_mocking.py | 20 +- 13 files changed, 1785 insertions(+), 829 deletions(-) rename src/kbmod/mocking/{fits_data.py => data.py} (61%) create mode 100644 src/kbmod/mocking/dump_headers.py rename src/kbmod/mocking/{data => }/headers_archive.tar.bz2 (100%) delete mode 100644 tests/dump_headers.py diff --git a/pyproject.toml b/pyproject.toml index 97311fe5b..2eee17cf3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -46,6 +46,9 @@ dependencies = [ "PyYAML>=6.0" ] +[project.scripts] +archiveheaders = "kbmod.mocking.dump_headers:main" + [project.urls] Documentation = "https://epyc.astro.washington.edu/~kbmod/" Repository = "https://github.com/dirac-institute/kbmod" diff --git a/src/kbmod/mocking/__init__.py b/src/kbmod/mocking/__init__.py index 2d479f17b..1644f4b3a 100644 --- a/src/kbmod/mocking/__init__.py +++ b/src/kbmod/mocking/__init__.py @@ -1,6 +1,6 @@ from . import utils from .catalogs import * from .headers import * -from .fits_data import * +from .data import * from .fits import * from .callbacks import * diff --git a/src/kbmod/mocking/callbacks.py b/src/kbmod/mocking/callbacks.py index 28c1d9397..01c26af34 100644 --- a/src/kbmod/mocking/callbacks.py +++ b/src/kbmod/mocking/callbacks.py @@ -3,13 +3,37 @@ from astropy.time import Time import astropy.units as u + __all__ = [ "IncrementObstime", - "ObstimeIterator", + "ObstimeIterator" ] class IncrementObstime: + """Endlessly incrementing FITS-standard timestamp. + + Parameters + ---------- + start : `astropy.time.Time` + Starting timestamp, or a value from which AstroPy can instantiate one. + dt : `float` or `astropy.units.Quantity` + Size of time-step to take. Assumed to be in days by default. + + Examples + -------- + >>> from kbmod.mocking import IncrementObstime + >>> obst = IncrementObstime("2021-01-01T00:00:00.0000", 1) + >>> obst() + '2021-01-01T00:00:00.000' + >>> obst() + '2021-01-02T00:00:00.000' + >>> import astropy.units as u + >>> obst = IncrementObstime("2021-01-01T00:00:00.0000", 1*u.hour) + >>> obst(); obst() + '2021-01-01T00:00:00.000' + '2021-01-01T01:00:00.000' + """ default_unit = "day" def __init__(self, start, dt): self.start = Time(start) @@ -17,26 +41,44 @@ def __init__(self, start, dt): dt = dt * getattr(u, self.default_unit) self.dt = dt - def __call__(self, header_val): + def __call__(self, header=None): curr = self.start self.start += self.dt return curr.fits class ObstimeIterator: - def __init__(self, obstimes, **kwargs): - self.obstimes = Time(obstimes, **kwargs) - self.generator = (t for t in obstimes) + """Iterate through given timestamps. - def __call__(self, header_val): - return Time(next(self.generator)).fits + Parameters + ---------- + obstimes : `astropy.time.Time` + Starting timestamp, or a value from which AstroPy can instantiate one. + Raises + ------ + StopIteration + When all the obstimes are exhausted. -class DitherValue: - def __init__(self, value, dither_range): - self.value = value - self.dither_range = dither_range + Examples + -------- + >>> from astropy.time import Time + >>> times = Time(range(60310, 60313, 1), format="mjd") + >>> from kbmod.mocking import ObstimeIterator + >>> obst = ObstimeIterator(times) + >>> obst(); obst(); obst(); obst() + '2024-01-01T00:00:00.000' + '2024-01-02T00:00:00.000' + '2024-01-03T00:00:00.000' + Traceback (most recent call last): + File "<stdin>", line 1, in <module> + File "/local/tmp/kbmod/src/kbmod/mocking/callbacks.py", line 49, in __call__ - def __call__(self, header_val): - return self.value + random.uniform(self.dither_range) + StopIteration + """ + def __init__(self, obstimes, **kwargs): + self.obstimes = Time(obstimes, **kwargs) + self.generator = (t for t in obstimes) + def __call__(self, header=None): + return Time(next(self.generator)).fits diff --git a/src/kbmod/mocking/catalogs.py b/src/kbmod/mocking/catalogs.py index 3063116d9..356dd97a7 100644 --- a/src/kbmod/mocking/catalogs.py +++ b/src/kbmod/mocking/catalogs.py @@ -9,7 +9,6 @@ __all__ = [ "gen_random_catalog", - "CatalogFactory", "SimpleCatalog", "SourceCatalogConfig", "SourceCatalog", @@ -18,67 +17,299 @@ ] -def gen_random_catalog(n, param_ranges, seed=None): - cat = QTable() - rng = np.random.default_rng(seed) - for param_name, (lower, upper) in param_ranges.items(): - cat[param_name] = rng.uniform(lower, upper, n) +def expand_gaussian_cols(cat): + """Expands columns ``flux`` and ``stddev`` into ``amplitude``, ``x_stddev`` + and ``y_stddev`` assuming the intended catalog model is a symmetric 2D + Gaussian. - if "x_stddev" not in param_ranges: + Amplitude is caluclated as: + A = flux/(2*pi*sigma_x*sigma_y) + + Parameters + ---------- + cat : `astropy.table.Table` + A catalog of simplified model parameters. + + Returns + ------ + expanded : `astropy.table.Table` + A catalog of AstroPy model parameters. + """ + if "x_stddev" not in cat.columns and "stddev" in cat.columns: cat["x_stddev"] = cat["stddev"] - if "y_stddev" not in param_ranges: + if "y_stddev" not in cat.columns and "stddev" in cat.columns: cat["y_stddev"] = cat["stddev"] - # conversion assumes a gaussian - if "flux" in param_ranges and "amplitude" not in param_ranges: + if "flux" in cat.columns and "amplitude" not in cat.columns: cat["amplitude"] = cat["flux"] / (2.0 * np.pi * xstd * ystd) return cat -class CatalogFactory(abc.ABC): - @abc.abstractmethod - def mock(self, *args, **kwargs): - raise NotImplementedError() +def gen_random_catalog(n, param_ranges, seed=None, assume_gaussian=True): + """Generates a random catalog of parameters of n sources based on + AstroPy's 2D models. + + The object parameters are specified as a dict where keys become columns and + the values represent the range from which each parameter is uniformly + randomly drawn from. + + If parameter ranges contain ``flux``, a column ``amplitude`` will be added + which value will be calculated assuming a 2D Gaussian model. If ``stddev`` + column is preset, then ``x_stddev`` and ``y_stddev`` columns are added, + assuming the model intended to be used with the catalog is a symmetrical + 2D Gaussian. + + Parameters + ---------- + n : `int` + Number of objects to create + param_ranges : `dict` + Dictionary whose keys become columns of the catalog and which values + define the ranges from which the catalog values are drawn from. + seed : `int` + NumPy's random number generator seed. + assume_gaussian : `bool` + Assume the catalog is intended for use with a 2D Gaussian model and + expand ``flux`` and ``stddev`` columns appropriately. See + `expand_gaussian_cols`/` + + Returns + ------- + catalog : `astropy.table.Table` + Catalog + + Examples + -------- + >>> import kbmod.mocking as kbmock + >>> kbmock.gen_random_catalog(3, {"amplitude": [0, 3], "x": [3, 6], "y": [6, 9]}, seed=100) + <QTable length=3> + amplitude x y + float64 float64 float64 + ------------------ ----------------- ----------------- + 2.504944891506027 3.128854712082634 8.370789493256163 + 1.7896620809036619 5.920963185318643 8.73101814388636 + 0.8665897250736108 4.789415112194066 8.064463342775236 + """ + cat = QTable() + rng = np.random.default_rng(seed) + + for param_name, (lower, upper) in param_ranges.items(): + cat[param_name] = rng.uniform(lower, upper, n) + + if assume_gaussian: + cat = expand_gaussian_cols(cat) + + return cat class SimpleCatalogConfig(Config): - mode = "static" # folding - kind = "pixel" # world + """A simple catalog configuration.""" + + mode = "static" + """Static, progressive or folding; static catalogs remain the same for every + realization, progressive catalogs modify values of realized catalog columns + and folding catalogs select rows from a larger catalog to return as a realization. + """ + + kind = "pixel" + """Either ``pixel`` or ``world``. The kind of position coordinates encoded + by the catalog. On-sky, world, coordinates require a list of WCSs to be given + to the mocking method""" + return_copy = False + """For static catalogs, return a reference to the underlying catalog or + a copy that can be modified.""" + seed = None - n = 100 - param_ranges = {} + """Random number generator seed. When `None` a different seed is used for + every catalog factory.""" + n = 100 + """Number of objects to generate.""" -class SimpleCatalog(CatalogFactory): + param_ranges = {} + """Default parameter ranges of the catalog values and columns that will be + generated.""" + + pix_pos_cols = ["x_mean", "y_mean"] + """Which """ + + pix_vel_cols = ["vx", "vy"] + + world_pos_cols = ["ra_mean", "dec_mean"] + + world_vel_cols = ["v_ra", "v_dec"] + + fold_col = "obstime" + + +class SimpleCatalog: + """Default base class for mocked catalogs factory. + + This base class will always generate empty catalogs and is intended to be + inherited from. + + A catalog is an `astropy.table.Table` of model values (position, amplitude + etc.) of sources. A catalog factory mock realizations of catalogs. There + are 2 ``kind``s of catalogs that can be mocked in 3 different ``modes``. + + In progressive catalogs mode an existing base catalog template column + values are incremented, or otherwise updated for each new realization. + Static catalogs always return the same realization of a catalog. And the + folding catalogs depend on an underlying larger catalog, from which they + select which rows to return as a new realization. This is namely most + appropriate for catalogs with timestamps, where a different realization of + a catalog is returned per timestamp. + When the catalog mode is ``folding`` the mocking method expects the values + on which to fold on. By default, these are timestamps `t`. + + If the catalog coordinate kind is ``pixel``, then the positions are + interpreted as pixel coordiantes. If the kind of catalog coordinates are + ``world`` then the positions are interpreted as on-sky coordinates in + decimal degrees and a list of WCSs is expected to be provided to the mocking + method. + + Parameters + ---------- + config : `SimpleCatalogConfig` + Factory configuration. + table : `astropy.table.Table` + The catalog template from which new realizations will be generated. + + Attributes + ---------- + config : `SimpleCatalogConfig` + The instance-bound configuration of the factory + table : `astropy.table.Table` + The template catalog used to create new realizations. + _realization : `astropy.table.Table` + The last realization of a catalog. + current : `int` + The current iterator counter. + + Examples + -------- + Directly instantiate a simple static catalog: + + >>> import kbmod.mocking as kbmock + >>> table = kbmock.gen_random_catalog(3, {"A": [0, 1], "x": [1, 2], "y": [2, 3]}, seed=100) + >>> f = kbmock.SimpleCatalog(table) + >>> f.mock() + [<QTable length=3> + A x y + float64 float64 float64 + ------------------ ------------------ ------------------ + 0.8349816305020089 1.0429515706942114 2.7902631644187212 + 0.5965540269678873 1.9736543951062142 2.9103393812954526 + 0.2888632416912036 1.5964717040646885 2.688154447591745] + + Instantiating from factory methods will derive additional information + regarding the catalog contents: + + >>> f2 = kbmock.SimpleCatalog.from_table(table) + >>> f2.mock() + [<QTable length=3> + A x y + float64 float64 float64 + ------------------ ------------------ ------------------ + 0.8349816305020089 1.0429515706942114 2.7902631644187212 + 0.5965540269678873 1.9736543951062142 2.9103393812954526 + 0.2888632416912036 1.5964717040646885 2.688154447591745] + + >>> f2.config["param_ranges"] + {'A': (0.2888632416912036, 0.8349816305020089), 'x': (1.0429515706942114, 1.9736543951062142), 'y': (2.688154447591745, 2.9103393812954526)} + >>> f.config["param_ranges"] + {} + + Folding catalogs just return subsets of the template catalog: + + >>> table["obstime"] = [1, 1, 2] + >>> f = kbmock.SimpleCatalog(table, mode="folding") + >>> f.mock(t=[1, 2]) + [<QTable length=2> + A x y obstime + float64 float64 float64 int64 + ------------------ ------------------ ------------------ ------- + 0.8349816305020089 1.0429515706942114 2.7902631644187212 1 + 0.5965540269678873 1.9736543951062142 2.9103393812954526 1, <QTable length=1> + A x y obstime + float64 float64 float64 int64 + ------------------ ------------------ ----------------- ------- + 0.2888632416912036 1.5964717040646885 2.688154447591745 2] + + And progressive catalogs increment selected column values (note the velocities + were assigned the default expected column names but positions weren't): + + >>> table["vx"] = [1, 1, 1] + >>> table["vy"] = [10, 10, 10] + >>> f = kbmock.SimpleCatalog(table, mode="progressive", pix_pos_cols=["x", "y"]) + >>> _ = f.mock(dt=1); f.mock(dt=1) + [<QTable length=3> + A x y vx vy + float64 float64 float64 float64 float64 + ------------------ ------------------ ------------------ ------- ------- + 0.8349816305020089 2.0429515706942114 12.790263164418722 1.0 10.0 + 0.5965540269678873 2.973654395106214 12.910339381295453 1.0 10.0 + 0.2888632416912036 2.5964717040646885 12.688154447591746 1.0 10.0] + """ default_config = SimpleCatalogConfig - def __init__(self, config, table, **kwargs): + def __init__(self, table, config=None, **kwargs): self.config = self.default_config(config=config, **kwargs) self.table = table self.current = 0 - - @classmethod - def from_config(cls, config, **kwargs): - config = cls.default_config(config=config, **kwargs) - table = gen_random_catalog(config["n"], config["param_ranges"], config["seed"]) - return cls(config, table) + self._realization = self.table.copy() + self.mode = self.config["mode"] + self.kind = self.config["kind"] @classmethod def from_defaults(cls, param_ranges=None, **kwargs): + """Create a catalog factory using its default config. + + Parameters + ---------- + param_ranges : `dict` + Default parameter ranges of the catalog values and columns that will be + generated. See `gen_random_catalog`. + kwargs : `dict` + Any additional keyword arguments will be used to supplement or override + any matching default configuration parameters. + + Returns + ------- + factory : `SimpleCatalog` + Simple catalog factory. + """ config = cls.default_config(**kwargs) if param_ranges is not None: config["param_ranges"].update(param_ranges) - return cls.from_config(config) + table = gen_random_catalog(config["n"], config["param_ranges"], config["seed"]) + return cls(table=table, config=config) @classmethod def from_table(cls, table, **kwargs): - if "x_stddev" not in table.columns: - table["x_stddev"] = table["stddev"] - if "y_stddev" not in table.columns: - table["y_stddev"] = table["stddev"] + """Create a factory from a table template, deriving parameters, their + value ranges and number of objects from the table. + + Optionally expands the given table columns assuming the intended source + model is a 2D Gaussian. + + Parameters + ---------- + table : `astropy.table.Table` + Catalog template. + kwargs : `dict` + Any additional keyword arguments will be used to supplement or override + any matching default configuration parameters. + + Returns + ------- + factory : `SimpleCatalog` + Simple catalog factory. + """ + table = expand_gaussian_cols(table) config = cls.default_config(**kwargs) config["n"] = len(table) @@ -86,65 +317,21 @@ def from_table(cls, table, **kwargs): for col in table.keys(): params[col] = (table[col].min(), table[col].max()) config["param_ranges"] = params - return cls(config, table) - - def mock(self): - self.current += 1 - if self.config["return_copy:"]: - return self.table.copy() - return self.table - - -class SourceCatalogConfig(SimpleCatalogConfig): - param_ranges = { - "amplitude": [1.0, 10.0], - "x_mean": [0.0, 4096.0], - "y_mean": [0.0, 2048.0], - "x_stddev": [1.0, 3.0], - "y_stddev": [1.0, 3.0], - "theta": [0.0, np.pi], - } - - -class SourceCatalog(SimpleCatalog): - default_config = SourceCatalogConfig - - -class ObjectCatalogConfig(SimpleCatalogConfig): - mode = "progressive" # folding - param_ranges = { - "amplitude": [0.1, 3.0], - "x_mean": [0.0, 4096.0], - "y_mean": [0.0, 2048.0], - "vx": [500.0, 1000.0], - "vy": [500.0, 1000.0], - "stddev": [0.25, 1.5], - "theta": [0.0, np.pi], - } - - -class ObjectCatalog(SimpleCatalog): - default_config = ObjectCatalogConfig - - def __init__(self, config, table, **kwargs): - # Obj cat always has to return a copy - kwargs["return_copy"] = True - super().__init__(config, table, **kwargs) - self._realization = self.table.copy() - self.mode = self.config["mode"] + return cls(table=table, config=config) @property def mode(self): + """Catalog mode, ``static``, ``folding`` or ``progressive``.""" return self._mode @mode.setter def mode(self, val): if val == "folding": self._gen_realization = self.fold - elif val == "progressive" and self.config["kind"] == "pixel": - self._gen_realization = self.next_pixel - elif val == "progressive" and self.config["kind"] == "world": - self._gen_realization = self.next_world + self.config["return_copy"] = True + elif val == "progressive": + self._gen_realization = self.next + self.config["return_copy"] = True elif val == "static": self._gen_realization = self.static else: @@ -154,32 +341,100 @@ def mode(self, val): ) self._mode = val + @property + def kind(self): + """Catalog coordinate kind, ``pixel`` or ``world``""" + return self._kind + + @mode.setter + def kind(self, val): + if val == "pixel": + self._cat_keys = self.config["pix_pos_cols"] + self.config["pix_vel_cols"] + elif val == "world": + self._cat_keys = self.config["world_pos_cols"] + self.config["world_vel_cols"] + else: + raise ValueError( + "Unrecognized coordinate kind. Expected 'world' or 'pixel, got" + f"{val} instead." + ) + self._kind = val + def reset(self): + """Reset the iteration counter reset the realization to the initial one.""" self.current = 0 self._realization = self.table.copy() def static(self, **kwargs): - return self.table.copy() + """Return the initial template as a catalog realization. - def _next(self, dt, keys): - a, va, b, vb = keys + Returns + ------- + catalog : `astropy.table.Table` + Catalog realization. + """ + self.current += 1 + if self.config["return_copy"]: + return self.table.copy() + return self.table + + def next(self, dt): + """Return the next catalog realization by incrementing the position + columns by the value of the velocity column and number of current `dt` steps. + + Parameters + ---------- + dt : `float` + Time increment of each step. + + Returns + ------- + catalog : `astropy.table.Table` + Catalog realization. + """ + a, b, va, vb = self._cat_keys self._realization[a] = self.table[a] + self.current * self.table[va] * dt self._realization[b] = self.table[b] + self.current * self.table[vb] * dt self.current += 1 return self._realization.copy() - def next_world(self, dt): - return self._next(dt, ["ra_mean", "v_ra", "dec_mean", "v_dec"]) - - def next_pixel(self, dt): - return self._next(dt, ["x_mean", "vx", "y_mean", "vy"]) - def fold(self, t, **kwargs): - self._realization = self.table[self.table["obstime"] == t] + """Return the next catalog realization by selecting those rows that + match the given parameter ``t``. By default the folding column is + ``obstime``. + + Parameters + ---------- + t : `float` + Value which to select from template catalog. + + Returns + ------- + catalog : `astropy.table.Table` + Catalog realization. + """ + self._realization = self.table[self.table[self.config["fold_col"]] == t] self.current += 1 return self._realization.copy() def mock(self, n=1, dt=None, t=None, wcs=None): + """Return the next realization(s) of the catalogs. + + Selects the appropriate mocking function. Ignores keywords not + appropriate for use given some catalog generation method and coordinate + kind. + + Parameters + ---------- + n : `int`, optional + Number of catalogs to mock. Default 1. + dt : `float`, optional. + Timestep between each step (arbitrary units) + t : `list[float]` or `list[astropy.time.Time]`, optional + Values on which to fold the template catalog. + wcs : `list[astropy.wcs.WCS]`, optional + WCS to use in conversion of on-sky coordinates to pixel coordinates, + for each realization. + """ data = [] if self.mode == "folding": @@ -187,12 +442,101 @@ def mock(self, n=1, dt=None, t=None, wcs=None): data.append(self.fold(t=ts)) else: for i in range(n): - data.append(self._gen_realization(dt)) + data.append(self._gen_realization(dt=dt)) - if self.config["kind"] == "world": + if self.kind == "world": + racol, deccol = self.config["world_pos_cols"] + xpixcol, ypixcol = self.config["pix_pos_cols"] for cat, w in zip(data, wcs): - x, y = w.world_to_pixel(SkyCoord(ra=cat["ra_mean"], dec=cat["dec_mean"], unit="deg")) - cat["x_mean"] = x - cat["y_mean"] = y + x, y = w.world_to_pixel(SkyCoord(ra=cat[racol], dec=cat[deccol], unit="deg")) + cat[xpixcol] = x + cat[ypixcol] = y return data + + +class SourceCatalogConfig(SimpleCatalogConfig): + """Source catalog config. + + Assumes sources are static, asymmetric 2D Gaussians. + + Parameter ranges + ---------------- + amplitude : [1, 10] + Amplitude of the model. + x_mean : [0, 4096] + Real valued x coordinate of the object's centroid. + y_mean : [0, 2048] + Real valued y coordinate of the object's centroid. + x_stddev : [1, 3] + Real valued standard deviation of the model distribution, in x. + y_stddev : [1, 3] + Real valued standard deviation of the model distribution, in y. + theta : `[0, np.pi]` + Rotation of the model's covariance matrix, increases counterclockwise. + In radians. + """ + param_ranges = { + "amplitude": [1.0, 10.0], + "x_mean": [0.0, 4096.0], + "y_mean": [0.0, 2048.0], + "x_stddev": [1.0, 3.0], + "y_stddev": [1.0, 3.0], + "theta": [0.0, np.pi], + } + + +class SourceCatalog(SimpleCatalog): + """A static catalog representing stars and galaxies. + + Coordinates defined in pixel space. + """ + default_config = SourceCatalogConfig + + +class ObjectCatalogConfig(SimpleCatalogConfig): + """Object catalog config. + + Assumes objects are symmetric 2D Gaussians moving in a linear fashion. + + Parameter ranges + ---------------- + amplitude : [1, 10] + Amplitude of the model. + x_mean : [0, 4096] + Real valued x coordinate of the object's centroid. + y_mean : [0, 2048] + Real valued y coordinate of the object's centroid. + x_stddev : [1, 3] + Real valued standard deviation of the model distribution, in x. + y_stddev : [1, 3] + Real valued standard deviation of the model distribution, in y. + theta : `[0, np.pi]` + Rotation of the model's covariance matrix, increases counterclockwise. + In radians. + """ + mode = "progressive" + param_ranges = { + "amplitude": [0.1, 3.0], + "x_mean": [0.0, 4096.0], + "y_mean": [0.0, 2048.0], + "vx": [500.0, 1000.0], + "vy": [500.0, 1000.0], + "stddev": [0.25, 1.5], + "theta": [0.0, np.pi], + } + + +class ObjectCatalog(SimpleCatalog): + """A catalog of moving objects. + + Assumed to be symmetric 2D Gaussians whose centroids are defined in pixel + space and moving in linear fashion with velocity also defined in pixel space. + The units are relative to the timestep. + """ + default_config = ObjectCatalogConfig + + def __init__(self, table, **kwargs): + # Obj cat always has to return a copy + kwargs["return_copy"] = True + super().__init__(table=table, **kwargs) diff --git a/src/kbmod/mocking/fits_data.py b/src/kbmod/mocking/data.py similarity index 61% rename from src/kbmod/mocking/fits_data.py rename to src/kbmod/mocking/data.py index 669c26917..cc27201fd 100644 --- a/src/kbmod/mocking/fits_data.py +++ b/src/kbmod/mocking/data.py @@ -8,13 +8,10 @@ __all__ = [ "add_model_objects", - "DataFactoryConfig", "DataFactory", - "SimpleImageConfig", "SimpleImage", - "SimpleMaskConfig", "SimpleMask", - "SimulatedImageConfig", + "SimpleVariance", "SimulatedImage", ] @@ -32,8 +29,7 @@ def add_model_objects(img, catalog, model): catalog : `astropy.table.QTable` Table of objects, a catalog model : `astropy.modelling.Model` - Astropy's model of the surface brightness of an source. Must contain - at least ``x_mean`` and ``y_mean``. + Astropy's model of the surface brightness of an source. Returns ------- @@ -59,11 +55,12 @@ def add_model_objects(img, catalog, model): for i, source in enumerate(catalog): for param in params_to_set: setattr(model, param, source[param]) - - if all( - [model.x_mean > 0, model.x_mean < img.shape[1], model.y_mean > 0, model.y_mean < img.shape[0]] - ): - model.render(img) + model.render(img) + except ValueError as e: + # ignore rendering models larger than the image + message = "The `bounding_box` is larger than the input out in one or more dimensions." + if message in str(e): + pass finally: for param, value in init_params.items(): setattr(model, param, value) @@ -77,19 +74,26 @@ class DataFactoryConfig(Config): """ default_img_shape = (5, 5) + """Default image size, used if mocking ImageHDU or CompImageHDUs.""" default_img_bit_width = 32 + """Default image data type is float32; the value of BITPIX flag in headers. + See bitpix_type_map for other codes. + """ default_tbl_length = 5 + """Default table length, used if mocking BinTableHDU or TableHDU HDUs.""" default_tbl_dtype = np.dtype([("a", int), ("b", int)]) + """Default table dtype, used when mocking table-HDUs that do not contain + a description of table layout. + """ writeable = False """Sets the base array ``writeable`` flag. Default `False`.""" return_copy = False - """ - When `True`, the `DataFactory.mock` returns a copy of the final object, + """When `True`, the `DataFactory.mock` returns a copy of the final object, otherwise the original (possibly mutable!) object is returned. Default `False`. """ @@ -110,35 +114,31 @@ class DataFactoryConfig(Config): class DataFactory: - """Generic data factory. - - Data can consists of tabular or array-like data of a single or compound - types. Generally the process of creation of a mocked data is relatively - simple: - 1) pre-generate whatever shared common base data is shared by all mocked - data - 2) mock one or many instances of dynamic portions of the data and paste - them onto the base static data. - - The base data can be writable or non-writable to prevent accidentally - mutating its value. Some data factories consist of only the simple base - data. In the case it is desired that the mocked data is further modified - it is possible to return a copy of that base data, so that the base data is - not mutated. By default it's assumed that all mocked data are allowed to - share a single, non-mutable, base data. - - This saves memory and improves performance as, for example, there is no - need to mock and allocate N (dimx, dimy) arrays for a shared static masking - array shared by all associated images. Therefore the default implementation - of mocking is to just continuously return the given base data. - - For dynamically created data, the data may depend on the type of the - Header Data Unit (HDU), or dynamically changing header data. Data generated - in these scenarios behaves as ``return_copy`` is always `True` regardless - of the configuration value. + """Generic data factory that can mock table and image HDUs from default + settings or given header definitions. + + Given a template, this factory repeats it for each mock. + A reference to the base template is returned whenever possible for + performance reasons. To prevent accidental mutation of the shared + array, the default behavior is that the returned data is not writable. + + A base template value of `None` is accepted as valid to satisfy FITS + factory use-case of generating HDUList stubs containing only headers. + + Primary purpose of this factory is to derive the template data given a + table, HDU or a Header object. When the base has no data, but just a + description of one, such as Headers, the default is to return "zeros" + for that datatype. This can be a zero length string, literal integer + zero, a float zero etc... Attributes ---------- + base : `np.array`, `np.recarray` or `None` + Base data template. + shape : `tuple` + Shape of base array when it exists. + dtype : `type` + Numpy type of the base array, when it exists. counter : `int` Data factory tracks an internal counter of generated objects that can be used as a ticker for generating new data. @@ -147,11 +147,31 @@ class DataFactory: ---------- base : `np.array` Static data shared by all mocked instances. - config : `DataFactoryConfig` - Configuration of the data factory. - **kwargs : + kwargs : Additional keyword arguments are applied as configuration overrides. + + Examples + -------- + >>> from astropy.io.fits import Header, CompImageHDU, BinTableHDU + >>> import kbmod.mocking as kbmock + >>> import numpy as np + >>> base = np.zeros((2, 2)) + >>> hdu = CompImageHDU(base) + >>> kbmock.DataFactory.from_hdu(hdu).mock() + array([[[0., 0.], + [0., 0.]]]) + >>> kbmock.DataFactory.from_header("image", hdu.header).mock() + array([[[0., 0.], + [0., 0.]]]) + >>> base = np.array([("test1", 10), ("test2", 11)], dtype=[("col1", "U5"), ("col2", int)]) + >>> hdu = BinTableHDU(base) + >>> kbmock.DataFactory.from_hdu(hdu).mock() + array([[(b'test1', 10), (b'test2', 11)]], + dtype=(numpy.record, [('col1', 'S5'), ('col2', '<i8')])) + >>> kbmock.DataFactory.from_header("table", hdu.header).mock() + array([[(b'', 0), (b'', 0)]], + dtype=(numpy.record, [('col1', 'S5'), ('col2', '>i8')])) """ default_config = DataFactoryConfig @@ -161,42 +181,79 @@ def __init__(self, base, **kwargs): self.config = self.default_config(**kwargs) self.base = base - if base is None: - self.shape = None - self.dtype = None - else: + if self.base is not None: self.shape = base.shape self.dtype = base.dtype self.base.flags.writeable = self.config["writeable"] - self.counter = 0 + self.counter = 0 @classmethod - def gen_image(cls, metadata=None, **kwargs): + def gen_image(cls, header=None, **kwargs): + """Generate an image from a complete or partial header and config. + + If a header is given, it trumps the default config values. When the + header is not complete, config values are used. Config overrides are + applied before the data description is evaluated. + + Parameters + ---------- + header : `None`, `Header` or dict-like, optional + Header, or dict-like object, containing the image-data descriptors. + kwargs : + Any additional keyword arguments are applied as config overrides. + + Returns + ------- + image : `np.array` + Image + """ conf = cls.default_config(**kwargs) - cols = metadata.get("NAXIS1", conf.default_img_shape[0]) - rows = metadata.get("NAXIS2", conf.default_img_shape[1]) - bitwidth = metadata.get("BITPIX", conf.default_img_bit_width) + metadata = {} if header is None else header + cols = metadata.get("NAXIS1", conf["default_img_shape"][0]) + rows = metadata.get("NAXIS2", conf["default_img_shape"][1]) + bitwidth = metadata.get("BITPIX", conf["default_img_bit_width"]) dtype = conf.bitpix_type_map[bitwidth] shape = (cols, rows) - return np.zeros(shape, dtype) @classmethod - def gen_table(cls, metadata=None, config=None, **kwargs): - conf = cls.default_config(config, **kwargs, method="subset") - - # FITS format standards prescribe FORTRAN-77-like input format strings - # for different types, but the base set has been extended significantly - # since and Rubin uses completely non-standard keys with support for - # their own internal abstractions like 'Angle' objects: - # https://archive.stsci.edu/fits/fits_standard/node58.html - # https://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation + def gen_table(cls, metadata=None, **kwargs): + """Generate an table from a complete or partial header and config. + + If a header is given, it trumps the default config values. When the + header is not complete, config values are used. Config overrides are + applied before the data description is evaluated. + + Parameters + ---------- + header : `None`, `Header` or dict-like, optional + Header, or dict-like object, containing the image-data descriptors. + kwargs : + Any additional keyword arguments are applied as config overrides. + + Returns + ------- + table : `np.array` + Table, a structured array. + + Notes + ----- + FITS format standards prescribe FORTRAN-77-like input format strings + for different data types, but the base set has been extended and/or + altered significantly by various pipelines to support their objects + internal to their pipelines. Constructing objects, or values, described + by non-standard strings will result in a failure. For a list of supported + column-types see: + https://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation + """ + conf = cls.default_config(**kwargs) + # https://github.com/lsst/afw/blob/main/src/fits.cc#L207 # So we really don't have much of a choice but to force a default # AstroPy HDU and then call the update. This might not preserve the # header or the data formats exactly and if metadata isn't given # could even assume a wrong class all together. The TableHDU is - # almost never used however - so hopefully this keeps on working. + # almost never used by us however - so hopefully this keeps on working. table_cls = BinTableHDU data = None if metadata is not None: @@ -219,28 +276,82 @@ def gen_table(cls, metadata=None, config=None, **kwargs): return data @classmethod - def from_hdu(cls, hdu, config=None, **kwargs): + def from_hdu(cls, hdu, **kwargs): + """Create the factory from an HDU with or without data and with or + without a complete Header. + + If the given HDU has data, it is preferred over creating a zero-array + based on the header. If the header is not complete, config defaults are + used. Config overrides are applied beforehand. + + Parameters + ---------- + hdu : `HDU` + One of AstroPy's Header Data Unit classes. + kwargs : + Config overrides. + + Returns + ------- + data : `np.array` + Data array, an ndarray or a recarray depending on the HDU. + """ if isinstance(hdu, (PrimaryHDU, CompImageHDU, ImageHDU)): - return cls(base=cls.gen_image(hdu), config=config, **kwargs) + base = hdu.data if hdu.data is not None else cls.gen_image(hdu.header) + return cls(base=base, **kwargs) elif isinstance(hdu, (TableHDU, BinTableHDU)): - return cls(base=cls.gen_table(hdu), config=config, **kwargs) + base = hdu.data if hdu.data is not None else cls.gen_table(hdu.header) + return cls(base=base, **kwargs) else: raise TypeError(f"Expected an HDU, got {type(hdu)} instead.") @classmethod - def from_header(cls, kind, header, config=None, **kwargs): + def from_header(cls, header, kind=None, **kwargs): + """Create the factory from an complete or partial Header. + + Provide the ``kind`` of data the header represents in situations where + the Header does not have an well defined ``XTENSION`` card. + + Parameters + ---------- + header : `astropy.io.fits.Header` + Header + kind : `str` or `None`, optional + Kind of data the header is representing. + kwargs : + Config overrides. + + Returns + ------- + data : `np.array` + Data array, an ndarray or a recarray depending on the Header and kind. + """ + hkind = header.get("XTENSION", False) + if hkind and "table" in hkind.lower(): + kind = "table" + elif hkind and "image" in hkind.lower(): + kind = "image" + elif kind is None: + raise ValueError("Must provide a header with XTENSION or ``kind``") + else: + # kind was defined as keyword arg, so all is right + pass + if kind.lower() == "image": - return cls(base=cls.gen_image(header), config=config, **kwargs) + return cls(base=cls.gen_image(header), **kwargs) elif kind.lower() == "table": - return cls(base=cls.gen_table(header), config=config, **kwargs) + return cls(base=cls.gen_table(header), **kwargs) else: raise TypeError(f"Expected an 'image' or 'table', got {kind} instead.") - @classmethod - def zeros(cls, shape, dtype, config=None, **kwargs): - return cls(np.zeros(shape, dtype), config, **kwargs) + def mock(self, n=1): + """Mock one or multiple data arrays. - def mock(self, n=1, **kwargs): + Parameters + ---------- + n : `int` + Number of data to mock. + """ if self.base is None: raise ValueError( "Expected a DataFactory that has a base, but none was set. " @@ -284,19 +395,40 @@ class SimpleVariance(DataFactory): **kwargs : Additional keyword arguments are applied as config overrides. + + Examples + -------- + >>> import kbmod.mocking as kbmock + >>> si = kbmock.SimpleImage(shape=(3, 3), add_noise=True, seed=100) + >>> sv = kbmock.SimpleVariance(gain=10) + >>> imgs = si.mock() + >>> imgs + array([[[ 8.694266, 9.225379, 10.046582], + [ 8.768851, 10.201585, 8.870326], + [10.702058, 9.910087, 9.283925]]], dtype=float32) + >>> sv.mock(imgs) + array([[[0.8694266 , 0.9225379 , 1.0046582 ], + [0.8768851 , 1.0201585 , 0.8870326 ], + [1.0702058 , 0.99100864, 0.9283925 ]]], dtype=float32) """ default_config = SimpleVarianceConfig def __init__(self, image=None, **kwargs): - # skip setting the base here since the real base is - # derived from given image we just set it manually - super().__init__(base=None, **kwargs) - + super().__init__(base=image, **kwargs) if image is not None: self.base = image / self.config["gain"] + self.config["read_noise"]**2 def mock(self, images=None): + """Mock one or multiple data arrays. + + Parameters + ---------- + images : `list[np.array]`, optional + List, or otherwise a collection, of images from which the variances + will be generated. When not provided, and base template was + defined, returns the base template. + """ if images is None: return self.base return images / self.config["gain"] + self.config["read_noise"]**2 @@ -306,13 +438,29 @@ class SimpleMaskConfig(DataFactoryConfig): """Simple mask configuration.""" dtype = np.float32 + """Data type""" threshold = 1e-05 + """Default pixel value threshold above which every pixel in the template + will be masked. + """ shape = (5, 5) + """Default image shape.""" + padding = 0 + """Number of pixels near the edge that are masked.""" + bad_columns = [] + """List of columns marked as bad.""" + patches = [] + """Default patches to mask. This is a list of tuples. Each tuple consists of + a patch and a value. The patch can be any combination of array coordinates + such as ``(int, int)`` for individual pixels, ``(slice, int)`` or + ``(int, slice)`` for columns and rows respectively or ``(slice, slice)`` + for areas. See `SimpleMask.from_params` for an example. + """ class SimpleMask(DataFactory): @@ -326,44 +474,57 @@ class SimpleMask(DataFactory): ---------- mask : `np.array` Bitmask array. + kwargs : + Config overrides. + + Examples + -------- + >>> import kbmod.mocking as kbmock + >>> si = kbmock.SimpleImage(shape=(3, 3), add_noise=True, seed=100) + >>> imgs = si.mock() + >>> imgs + array([[[ 8.694266, 9.225379, 10.046582], + [ 8.768851, 10.201585, 8.870326], + [10.702058, 9.910087, 9.283925]]], dtype=float32) + >>> sm = kbmock.SimpleMask.from_image(imgs, threshold=9) + >>> sm.base + array([[[0., 1., 1.], + [0., 1., 0.], + [1., 1., 1.]]], dtype=float32) """ default_config = SimpleMaskConfig + """Default configuration.""" def __init__(self, mask, **kwargs): super().__init__(base=mask, **kwargs) @classmethod def from_image(cls, image, **kwargs): + """Create a factory instance out of an image, masking all pixels above + a threshold. + + Parameters + ---------- + image : `np.array` + Template image from which a mask is created. + kwargs : + Config overrides. + """ config = cls.default_config(**kwargs) mask = image.copy() mask[image > config["threshold"]] = 1 + mask[image <= config["threshold"]] = 0 return cls(mask) @classmethod def from_params(cls, **kwargs): - """Create a mask by adding a padding around the edges of the array with - the given dimensions and mask out bad columns. + """Create a factory instance from config parameters. Parameters ---------- - shape : `tuple` - Tuple of (width, height)/(cols, rows) dimensions of the mask. - padding : `int` - Number of pixels near the edge that will be masked. - bad_columns : `list[int]` - Indices of bad columns to mask - patches : `list[tuple]` - Patches to mask. This is a list of tuples. Each tuple consists of - a patch and a value. The patch can be any combination of array - coordinates such as ``(int, int)`` for individual pixels, - ``(slice, int)`` or ``(int, slice)`` for columns and rows - respectively or ``(slice, slice)`` for areas. - - Returns - ------- - mask_factory : `SimpleMask` - Mask factory. + kwargs : + Config overrides. Examples -------- @@ -433,9 +594,12 @@ class SimpleImageConfig(DataFactoryConfig): noise_std = 1.0 """Standard deviation of the Gaussian distribution of the noise.""" - model = models.Gaussian2D + model = models.Gaussian2D(x_stddev=1, y_stddev=1) """Source and object model used to render them on the image.""" + dtype = np.float32 + """Numpy data type.""" + class SimpleImage(DataFactory): """Simple image data factory. @@ -445,31 +609,46 @@ class SimpleImage(DataFactory): image. Noise realization is drawn from a Gaussian distribution with the given - standard deviation and centered on the given mean. + standard deviation and mean. Parameters ---------- image : `np.array` Science image that will be used as a base onto which to render details. - config : `SimpleImageConfig` - Configuration. src_cat : `CatalogFactory` Static source catalog. obj_cat : `CatalogFactory` Moving object catalog factory. - **kwargs : - Additional keyword arguments are applied as config + kwargs : + Additional keyword arguments are applied as config. overrides. - """ + Examples + -------- + >>> import kbmod.mocking as kbmock + >>> si = kbmock.SimpleImage() + >>> si.mock() + array([[[0., 0., 0., ..., 0., 0., 0.], + [0., 0., 0., ..., 0., 0., 0.], + [0., 0., 0., ..., 0., 0., 0.], + ..., + [0., 0., 0., ..., 0., 0., 0.], + [0., 0., 0., ..., 0., 0., 0.], + [0., 0., 0., ..., 0., 0., 0.]]], dtype=float32) + >>> si = kbmock.SimpleImage(shape=(3, 3), add_noise=True, seed=100) + >>> si.mock() + array([[[ 8.694266, 9.225379, 10.046582], + [ 8.768851, 10.201585, 8.870326], + [10.702058, 9.910087, 9.283925]]], dtype=float32) + """ default_config = SimpleImageConfig + """Default configuration.""" - def __init__(self, image=None, src_cat=None, obj_cat=None, - dtype=np.float32, **kwargs): + def __init__(self, image=None, src_cat=None, obj_cat=None, **kwargs): super().__init__(image, **kwargs) if image is None: - image = np.zeros(self.config["shape"], dtype=dtype) + image = np.zeros(self.config["shape"], dtype=self.config["dtype"]) else: image = image self.config["shape"] = image.shape @@ -480,7 +659,7 @@ def __init__(self, image=None, src_cat=None, obj_cat=None, self.src_cat = src_cat if self.src_cat is not None: image = image if image.flags.writeable else image.copy() - add_model_objects(image, src_cat.table, self.config["model"](x_stddev=1, y_stddev=1)) + add_model_objects(image, src_cat.table, self.config["model"]) image.flags.writeable = self.config["writeable"] self.base = image @@ -496,6 +675,11 @@ def add_noise(cls, images, config): A ``(n_images, image_width, image_height)`` shaped array of images. config : `SimpleImageConfig` Configuration. + + Returns + ------- + images : `np.array` + A ``(n_images, image_width, image_height)`` shaped array of images. """ rng = np.random.default_rng(seed=config["seed"]) shape = images.shape @@ -520,9 +704,14 @@ def mock(self, n=1, obj_cats=None, **kwargs): obj_cats : `list[Catalog]` A list of catalogs as long as the number of requested images of moving objects that will be inserted into the image. + + Returns + ------- + images : `np.array` + A ``(n_images, image_width, image_height)`` shaped array of images. """ shape = (n, *self.config["shape"]) - images = np.zeros(shape, dtype=np.float32) + images = np.zeros(shape, dtype=self.config["dtype"]) if self.config["add_noise"]: images = self.add_noise(images=images, config=self.config) @@ -539,7 +728,7 @@ def mock(self, n=1, obj_cats=None, **kwargs): if obj_cats is not None: pairs = [(images[0], obj_cats[0])] if n == 1 else zip(images, obj_cats) for i, (img, cat) in enumerate(pairs): - add_model_objects(img, cat, self.config["model"](x_stddev=1, y_stddev=1)) + add_model_objects(img, cat, self.config["model"]) return images @@ -547,27 +736,32 @@ def mock(self, n=1, obj_cats=None, **kwargs): class SimulatedImageConfig(DataFactoryConfig): """Simulated image configuration. - Simulated image add several sources of noise into the image, bad columns, - hot pixels, including the possibility of adding static and moving sources. - On a higher level it is possible to modify this behavior by setting: + Simulated image attempts to add noise to the image in a statistically + meaningful sense, but it does not reproduce the noise qualities in the same + way an optical simulation would. Noise sources added are: + - bad columns + - hot pixels + - read noise + - dark current + - sky level + + The quantities are expressed in physical units and the defaults were + selected to sort of make sense. + + Control over which source of noise are included in the image can be done by + setting the - add_noise - add_bad_cols - add_hot_pix - parameters to `False`. Optionally, for a more fine-grained control set the - distribution parameters, f.e. mean and standard deviation, such that they - do not produce measurable values in the image. - - The quantities are expressed in physical units and the defaults were - selected to sort of make sense. Sky levels are not modeled very - realistically, being expressed as an additional level of noise, in counts, - additive to the detector noise. + flags to `False`. For a more fine-grained control set the distribution + parameters, f.e. mean and standard deviation, such that they do not produce + measurable values in the image. - Generally expect the mean value of pixel counts to be: + Expect the mean value of pixel counts to be: bias + mean(dark_current)*exposure + mean(sky_level) - The deviation of the pixel counts around the expected value can be - estimated by: + The deviation of the pixel counts should be expected to be: sqrt( std(read_noise)^2 + sqrt(sky_level)^2 ) """ @@ -657,19 +851,29 @@ class SimulatedImageConfig(DataFactoryConfig): """Sky level, in counts.""" # Object and Source properties - model = models.Gaussian2D + model = models.Gaussian2D(x_stddev=1, y_stddev=1) + """Source and object model used to render them on the image.""" + + dtype = np.float32 + """Numpy data type.""" class SimulatedImage(SimpleImage): - """Simulated image includes multiple sources of noise, bad columns, hot - pixels, static sources and moving objects. + """Simulated image attempt to include a more realistic noise profile. + + Noise sources added are: + - bad columns + - hot pixels + - read noise + - dark current + - sky level + + Static or moving objects may be added to the simulated image. Parameters ---------- image : `np.array` - Science image that will be used as a base onto which to render details. - config : `SimpleImageConfig` - Configuration. + Base template image on which details will be rendered. src_cat : `CatalogFactory` Static source catalog. obj_cat : `CatalogFactory` @@ -680,6 +884,7 @@ class SimulatedImage(SimpleImage): """ default_config = SimulatedImageConfig + """Default config.""" @classmethod def add_bad_cols(cls, image, config): @@ -794,7 +999,7 @@ def add_noise(cls, images, config): return images @classmethod - def gen_base_image(cls, config=None, src_cat=None, dtype=np.float32): + def gen_base_image(cls, config=None, src_cat=None): """Generate base image from configuration. Parameters @@ -812,15 +1017,20 @@ def gen_base_image(cls, config=None, src_cat=None, dtype=np.float32): config = cls.default_config(config) # empty image - base = np.zeros(config["shape"], dtype=dtype) + base = np.zeros(config["shape"], dtype=config["dtype"]) base += config["bias"] base = cls.add_hot_pixels(base, config) base = cls.add_bad_cols(base, config) if src_cat is not None: - add_model_objects(base, src_cat.table, config["model"](x_stddev=1, y_stddev=1)) + add_model_objects(base, src_cat.table, config["model"]) return base - def __init__(self, image=None, src_cat=None, obj_cat=None, dtype=np.float32,**kwargs): + def __init__(self, image=None, src_cat=None, obj_cat=None, **kwargs): conf = self.default_config(**kwargs) - super().__init__(image=self.gen_base_image(conf, dtype=dtype), src_cat=src_cat, obj_cat=obj_cat, **conf) + super().__init__( + image=self.gen_base_image(conf), + src_cat=src_cat, + obj_cat=obj_cat, + **conf + ) diff --git a/src/kbmod/mocking/dump_headers.py b/src/kbmod/mocking/dump_headers.py new file mode 100644 index 000000000..f5a26ec07 --- /dev/null +++ b/src/kbmod/mocking/dump_headers.py @@ -0,0 +1,309 @@ +# Modified from the original Astropy code to add a card format to the +# tabular output. All rights belong to the original authors. + +# Licensed under a 3-clause BSD style license - see LICENSE.rst +""" +Modified Astropy ``archiveheaders`` utility that adds a datatype column for each +header card to the output. All rights belong to the original authors. + +``archiveheaders`` is a command line script based on astropy.io.fits for printing +the header(s) of one or more FITS file(s) to the standard output in a human- +readable format. + +The modifications to the script include: +- supporting only tabular output +- making "ascii.ecsv" the default output format +- appending a datatype to each serialized header card, describing the type of + the cards value. + +Example uses of ``archiveheaders``: + +1. Print the header of all the HDUs of a .fits file:: + + $ archiveheaders filename.fits + +2. Dump the header keywords of all the files in the current directory into a + machine-readable ecsv file:: + + $ archiveheaders *.fits > keywords.csv + +3. Sorting the output along a specified keyword:: + + $ archiveheaders -f -s DATE-OBS *.fits + +4. Sort first by OBJECT, then DATE-OBS:: + + $ archiveheaders -f -s OBJECT -s DATE-OBS *.fits + +Note that compressed images (HDUs of type +:class:`~astropy.io.fits.CompImageHDU`) really have two headers: a real +BINTABLE header to describe the compressed data, and a fake IMAGE header +representing the image that was compressed. Astropy returns the latter by +default. You must supply the ``--compressed`` option if you require the real +header that describes the compression. + +With Astropy installed, please run ``archiveheaders --help`` to see the full usage +documentation. +""" + +import argparse +import sys + +import numpy as np + +from astropy import __version__, log +from astropy.io import fits + +DESCRIPTION = """ +Print the header(s) of a FITS file. Optional arguments allow the desired +extension(s), keyword(s), and output format to be specified. +Note that in the case of a compressed image, the decompressed header is +shown by default. + +This script is part of the Astropy package. See +https://docs.astropy.org/en/latest/io/fits/usage/scripts.html#module-astropy.io.fits.scripts.fitsheader +for further documentation. +""".strip() + + +class ExtensionNotFoundException(Exception): + """Raised if an HDU extension requested by the user does not exist.""" + + +class HeaderFormatter: + """Class to format the header(s) of a FITS file for display by the + `fitsheader` tool; essentially a wrapper around a `HDUList` object. + + Example usage: + fmt = HeaderFormatter('/path/to/file.fits') + print(fmt.parse()) + + Parameters + ---------- + filename : str + Path to a single FITS file. + verbose : bool + Verbose flag, to show more information about missing extensions, + keywords, etc. + + Raises + ------ + OSError + If `filename` does not exist or cannot be read. + """ + + def __init__(self, filename, verbose=True): + self.filename = filename + self.verbose = verbose + self._hdulist = fits.open(filename) + + def parse(self, compressed=False): + """Returns the FITS file header(s) in a readable format. + + Parameters + ---------- + compressed : bool, optional + If True, shows the header describing the compression, rather than + the header obtained after decompression. (Affects FITS files + containing `CompImageHDU` extensions only.) + + Returns + ------- + formatted_header : str or astropy.table.Table + Traditional 80-char wide format in the case of `HeaderFormatter`; + an Astropy Table object in the case of `TableHeaderFormatter`. + """ + hdukeys = range(len(self._hdulist)) # Display all by default + return self._parse_internal(hdukeys, compressed) + + def _parse_internal(self, hdukeys, compressed): + """The meat of the formatting; in a separate method to allow overriding.""" + result = [] + for idx, hdu in enumerate(hdukeys): + try: + cards = self._get_cards(hdu, compressed) + except ExtensionNotFoundException: + continue + + if idx > 0: # Separate HDUs by a blank line + result.append("\n") + result.append(f"# HDU {hdu} in {self.filename}:\n") + for c in cards: + result.append(f"{c}\n") + return "".join(result) + + def _get_cards(self, hdukey, compressed): + """Returns a list of `astropy.io.fits.card.Card` objects. + + This function will return the desired header cards, taking into + account the user's preference to see the compressed or uncompressed + version. + + Parameters + ---------- + hdukey : int or str + Key of a single HDU in the HDUList. + + compressed : bool, optional + If True, shows the header describing the compression. + + Raises + ------ + ExtensionNotFoundException + If the hdukey does not correspond to an extension. + """ + # First we obtain the desired header + try: + if compressed: + # In the case of a compressed image, return the header before + # decompression (not the default behavior) + header = self._hdulist[hdukey]._header + else: + header = self._hdulist[hdukey].header + except (IndexError, KeyError): + message = f"{self.filename}: Extension {hdukey} not found." + if self.verbose: + log.warning(message) + raise ExtensionNotFoundException(message) + + # return all cards + cards = header.cards + return cards + + def close(self): + self._hdulist.close() + + +class TableHeaderFormatter(HeaderFormatter): + """Class to convert the header(s) of a FITS file into a Table object. + The table returned by the `parse` method will contain four columns: + filename, hdu, keyword, and value. + + Subclassed from HeaderFormatter, which contains the meat of the formatting. + """ + + def _parse_internal(self, hdukeys, compressed): + """Method called by the parse method in the parent class.""" + tablerows = [] + for hdu in hdukeys: + try: + for card in self._get_cards(hdu, compressed): + tablerows.append( + { + "filename": self.filename, + "hdu": hdu, + "keyword": card.keyword, + "value": str(card.value), + "format": type(card.value).__name__, + } + ) + except ExtensionNotFoundException: + pass + + if tablerows: + from astropy import table + + return table.Table(tablerows) + return None + + +def print_headers_as_table(args): + """Prints FITS header(s) in a machine-readable table format. + + Parameters + ---------- + args : argparse.Namespace + Arguments passed from the command-line as defined below. + """ + tables = [] + # Create a Table object for each file + for filename in args.filename: # Support wildcards + formatter = None + try: + formatter = TableHeaderFormatter(filename) + tbl = formatter.parse(args.compressed) + if tbl: + tables.append(tbl) + except OSError as e: + log.error(str(e)) # file not found or unreadable + finally: + if formatter: + formatter.close() + + # Concatenate the tables + if len(tables) == 0: + return False + elif len(tables) == 1: + resulting_table = tables[0] + else: + from astropy import table + + resulting_table = table.vstack(tables) + # Print the string representation of the concatenated table + resulting_table.write(sys.stdout, format=args.table) + + +def main(args=None): + """This is the main function called by the `fitsheader` script.""" + parser = argparse.ArgumentParser( + description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter + ) + mode_group = parser.add_mutually_exclusive_group() + mode_group.add_argument( + "-t", + "--table", + nargs="?", + default="ascii.ecsv", + metavar="FORMAT", + help=( + '"The default format is "ascii.ecsv" (can be "ascii.csv", "ascii.html", ' + '"ascii.latex", "fits", etc)' + ), + ) + mode_group.add_argument( + "-f", + "--fitsort", + action="store_true", + help=("print the headers as a table with each unique keyword in a given column (fitsort format) "), + ) + parser.add_argument( + "-s", + "--sort", + metavar="SORT_KEYWORD", + action="append", + type=str, + help=( + "sort output by the specified header keywords, can be repeated to " + "sort by multiple keywords; Only supported with -f/--fitsort" + ), + ) + parser.add_argument( + "-c", + "--compressed", + action="store_true", + help=( + "for compressed image data, show the true header which describes " + "the compression rather than the data" + ), + ) + parser.add_argument( + "filename", + nargs="+", + help="path to one or more files; wildcards are supported", + ) + args = parser.parse_args() + + if args.sort: + args.sort = [key.replace(".", " ") for key in args.sort] + if not args.fitsort: + log.error("Sorting with -s/--sort is only supported in conjunction with" " -f/--fitsort") + # 2: Unix error convention for command line syntax + sys.exit(2) + + # Now print the desired headers + try: + print_headers_as_table(args) + except OSError: + # A 'Broken pipe' OSError may occur when stdout is closed prematurely, + # eg. when calling `fitsheader file.fits | head`. We let this pass. + pass diff --git a/src/kbmod/mocking/fits.py b/src/kbmod/mocking/fits.py index 5db6650ad..35a3c1ee8 100644 --- a/src/kbmod/mocking/fits.py +++ b/src/kbmod/mocking/fits.py @@ -3,16 +3,12 @@ from .callbacks import IncrementObstime from .headers import HeaderFactory, ArchivedHeader -from .fits_data import ( +from .data import ( DataFactoryConfig, DataFactory, - SimpleImageConfig, SimpleImage, - SimulatedImageConfig, SimulatedImage, - SimpleVarianceConfig, SimpleVariance, - SimpleMaskConfig, SimpleMask, ) @@ -25,7 +21,7 @@ class NoneFactory: - "Kinda makes some code later prettier. Kinda" + """Factory that returns `None`.""" def mock(self, n): return [ None, @@ -33,6 +29,54 @@ def mock(self, n): class EmptyFits: + """Mock FITS files containing zeroed arrays. + + Mocks a FITS file containing 4 extensions: + - primary + - image + - variance + - mask + that contain no data. By default the created data is immutable. Useful when + data is added after mocking a collection of HDULists. + + The primary header contains an incrementing timestamp. + + Attributes + ---------- + prim_hdr : `HeaderFactory` + Primary header factory + img_hdr : `HeaderFactory` + Image header factory, contains WCS. + var_hdr : `HeaderFactory` + Variance header factory, contains WCS. + mask_hdr: `HeaderFactory` + Mask header factory, contains WCS. + img_data : `DataFactory` + Image data factory, used to also create variances. + mask_data : `DataFactory` + Mask data factory. + current : `int` + Counter of current mocking iteration. + + Parameters + ---------- + header : `dict-like` or `None`, optional + Keyword-value pairs that will use to create and update the primary header + metadata. + shape : `tuple`, optional + Size of the image arrays, 100x100 pixels by default. + start_t : `str` or `astropy.time.Time`, optional + A timestamp string interpretable by Astropy, or a time object. + step_t : `float` or `astropy.time.TimeDelta`, optional + Timestep between each mocked instance. In units of days by default. + editable_images : `bool`, optional + Make mocked images writable and independent. `False` by default. + Makes the variance images editable too. + editable_masks : `bool`, optional + Make masks writable and independent. `False` by default. Masks can + usually be shared, so leaving them immutable reduces the memory footprint + and time it takes to mock large images. + """ def __init__( self, header=None, @@ -53,15 +97,16 @@ def __init__( self.mask_hdr = HeaderFactory.from_ext_template({"EXTNAME": "MASK"}, shape=shape) self.img_data = DataFactory.from_header( - kind="image", header=self.img_hdr.header, writeable=editable_images, return_copy=editable_images + header=self.img_hdr.header, kind="image", writeable=editable_images, return_copy=editable_images ) self.mask_data = DataFactory.from_header( - kind="image", header=self.mask_hdr.header, return_copy=editable_masks, writeable=editable_masks + header=self.mask_hdr.header, kind="image", return_copy=editable_masks, writeable=editable_masks ) self.current = 0 def mock(self, n=1): + """Mock n empty fits files.""" prim_hdrs = self.prim_hdr.mock(n=n) img_hdrs = self.img_hdr.mock(n=n) var_hdrs = self.var_hdr.mock(n=n) @@ -89,6 +134,58 @@ def mock(self, n=1): class SimpleFits: + """Mock FITS files containing data. + + Mocks a FITS file containing 4 extensions: + - primary + - image + - variance + - mask + that contain no data. By default the created data is mutable. + The primary header contains an incrementing timestamp. + + Attributes + ---------- + prim_hdr : `HeaderFactory` + Primary header factory + img_hdr : `HeaderFactory` + Image header factory, contains WCS. + var_hdr : `HeaderFactory` + Variance header factory, contains WCS. + mask_hdr: `HeaderFactory` + Mask header factory, contains WCS. + img_data : `SimpleImage` or `SimulatedImage` + Image data factory. + var_data : `SimpleVariance`` + Variance data factory. + mask_data : `SimpleMask` + Mask data factory. + current : `int` + Counter of current mocking iteration. + + Parameters + ---------- + shared_header_metadata : `dict-like` or `None`, optional + Keyword-value pairs that will use to create and update all of the headers. + shape : `tuple`, optional + Size of the image arrays, 100x100 pixels by default. + start_t : `str` or `astropy.time.Time`, optional + A timestamp string interpretable by Astropy, or a time object. + step_t : `float` or `astropy.time.TimeDelta`, optional + Timestep between each mocked instance. In units of days by default. + with_noise : `bool` + Add noise into the images. + noise : `str` + Noise profile to use, "simplistic" is simple Gaussian noise and + "realistic" simulates several noise sources and adds them together. + src_cat : `SourceCatalog` + Source catalog of static objects to add into the images. + obj_cat : `ObjectCatalog` + Object catalog of moving objects to add into the images. + wcs_factory : `WCSFactory` + Factory used to create and update WCS data in headers of mocked FITS + files. + """ def __init__( self, shared_header_metadata=None, @@ -147,6 +244,7 @@ def __init__( self.current = 0 def mock(self, n=1): + """Mock n simple FITS files.""" prim_hdrs = self.prim_hdr.mock(n=n) img_hdrs = self.img_hdr.mock(n=n) var_hdrs = self.var_hdr.mock(n=n) @@ -183,6 +281,62 @@ def mock(self, n=1): class DECamImdiff: + """Mock FITS files from archived headers of Rubin Science Pipelines + "differenceExp" dataset type headers (arXiv:2109.03296). + + Each FITS file contains 16 HDUs, one PRIMARY, 3 images (image, mask and + variance) and supporting data such as PSF, ArchiveId etc. stored in + `BinTableHDU`s. + + The exported data contains approximately 60 real header data of a Rubin + Science Pipelines ``differenceExp`` dataset type. The data was created from + DEEP B1a field, as described in arXiv:2310.03678. + + By default only headers are mocked. + + Attributes + ---------- + hdr_factory : `ArchivedHeader` + Header factory for all 16 HDUs. + data_factories : `list[DataFactory]` + Data factories, one for each HDU being mocked. + hdu_layout : `list[HDU]` + List of HDU types (PrimaryHDU, CompImageHDU...) used to create an HDU + from a header and a data factory. + img_data : `SimpleImage` or `SimulatedImage` + Reference to second element in `data_factories`, an image data factory. + var_data : `SimpleVariance`` + Reference to third element in `data_factories`, an variance data factory. + Variance uses read_noise of 7.0 e- and gain of 5.0 e-/count as described + by the Table 2.2 in DECam Data Handbook Version 2.05 March 2014. + mask_data : `SimpleMask` + Reference to fourth element in `data_factories`, an mask data factory. + current : `int` + Counter of current mocking iteration. + + Parameters + ---------- + shared_header_metadata : `dict-like` or `None`, optional + Keyword-value pairs that will use to create and update all of the headers. + shape : `tuple`, optional + Size of the image arrays, 100x100 pixels by default. + start_t : `str` or `astropy.time.Time`, optional + A timestamp string interpretable by Astropy, or a time object. + step_t : `float` or `astropy.time.TimeDelta`, optional + Timestep between each mocked instance. In units of days by default. + with_noise : `bool` + Add noise into the images. + noise : `str` + Noise profile to use, "simplistic" is simple Gaussian noise and + "realistic" simulates several noise sources and adds them together. + src_cat : `SourceCatalog` + Source catalog of static objects to add into the images. + obj_cat : `ObjectCatalog` + Object catalog of moving objects to add into the images. + wcs_factory : `WCSFactory` + Factory used to create and update WCS data in headers of mocked FITS + files. + """ def __init__(self, with_data=False, with_noise=False, noise="simplistic", src_cat=None, obj_cat=None): if obj_cat is not None and obj_cat.mode == "progressive": @@ -218,7 +372,7 @@ def __init__(self, with_data=False, with_noise=False, noise="simplistic", self.data_factories[1] = self.img_data self.data_factories[2] = self.mask_data self.data_factories[3] = self.mask_data - self.data_factories[4:] = [DataFactory.from_header("table", h) for h in headers[4:]] + self.data_factories[4:] = [DataFactory.from_header(h, kind="table") for h in headers[4:]] self.with_data = with_data self.src_cat = src_cat @@ -228,6 +382,7 @@ def __init__(self, with_data=False, with_noise=False, noise="simplistic", self.current = 0 def mock(self, n=1): + """Mock n differenceExp dataset type-like FITS files.""" headers = self.hdr_factory.mock(n=n) obj_cats = None diff --git a/src/kbmod/mocking/headers.py b/src/kbmod/mocking/headers.py index dd7977cb9..2a7f01f92 100644 --- a/src/kbmod/mocking/headers.py +++ b/src/kbmod/mocking/headers.py @@ -13,13 +13,72 @@ __all__ = [ -# "make_wcs", "WCSFactory", "HeaderFactory", "ArchivedHeader", ] class WCSFactory: + """WCS Factory. + + Used to generate collections of ICRS TAN WCS from parameters, or as a way to + update the given header with a new WCS. + + The new WCS is generated by inheriting the header and updating its properties, + or by completely overwriting the Header WCS and replacing it with a new WCS. + + Attribute + --------- + current : `int` + Counter of the number of mocked WCSs. + template : `WCS` + Template WCS. + + Parameters + ---------- + pointing : `tuple`, optional + Ra and Dec w.r.t ICRS coordinate system, in decimal degrees. + rotation : `float`, optional + Rotation, in degrees, from ICRS equator (ecliptic). + pixscale : `float`, optional + Pixel scale, in arcseconds per pixel. + dither_pos : `bool`, optional + Dither positions of mocked WCSs. + dither_rot : `bool`, optional + Dither rotations of mocked WCSs. + dither_amplitudes : `tuple`, optional + A set of 3 values, the amplitude of dither in ra direction, the + amplitude of dither in dec direction and the amplitude of dither in + rotations. In decimal degrees. + cycle : `list[WCS]`, optional + A list of pre-created WCS objects through which to iterate. + + Examples + -------- + >>> from astropy.io.fits import Header + >>> import kbmod.mocking as kbmock + >>> wcsf = kbmock.WCSFactory(pointing=(10, 10), rotation=45) + >>> wcsf.mock(Header()) + WCSAXES = 2 / Number of coordinate axes + CRPIX1 = 0.0 / Pixel coordinate of reference point + CRPIX2 = 0.0 / Pixel coordinate of reference point + PC1_1 = -3.928369684292E-05 / Coordinate transformation matrix element + PC1_2 = 3.9283723288914E-05 / Coordinate transformation matrix element + PC2_1 = 3.9283723288914E-05 / Coordinate transformation matrix element + PC2_2 = 3.928369684292E-05 / Coordinate transformation matrix element + CDELT1 = 1.0 / [deg] Coordinate increment at reference point + CDELT2 = 1.0 / [deg] Coordinate increment at reference point + CUNIT1 = 'deg' / Units of coordinate increment and value + CUNIT2 = 'deg' / Units of coordinate increment and value + CTYPE1 = 'RA---TAN' / Right ascension, gnomonic projection + CTYPE2 = 'DEC--TAN' / Declination, gnomonic projection + CRVAL1 = 10.0 / [deg] Coordinate value at reference point + CRVAL2 = 10.0 / [deg] Coordinate value at reference point + LONPOLE = 180.0 / [deg] Native longitude of celestial pole + LATPOLE = 10.0 / [deg] Native latitude of celestial pole + MJDREF = 0.0 / [d] MJD of fiducial time + RADESYS = 'ICRS' / Equatorial coordinate system, + """ def __init__(self, mode="static", pointing=(351., -5), rotation=0, pixscale=0.2, dither_pos=False, dither_rot=False, dither_amplitudes=(0.01, 0.01, 0.0), @@ -41,7 +100,7 @@ def __init__(self, mode="static", self.current = 0 @classmethod - def gen_wcs(cls, center_coords, rotation, pixscale, shape=None): + def gen_wcs(cls, pointing, rotation=0, pixscale=1, shape=None): """ Create a simple celestial `~astropy.wcs.WCS` object in ICRS coordinate system. @@ -61,14 +120,31 @@ def gen_wcs(cls, center_coords, rotation, pixscale, shape=None): Returns ------- wcs : `astropy.wcs.WCS` - The world coordinate system. + The world coordinate system. Examples -------- - >>> from kbmod.mocking import make_wcs - >>> shape = (100, 100) - >>> wcs = make_wcs(shape) - >>> wcs = make_wcs(shape, (115, 5), 45, 0.1) + >>> import kbmod.mocking as kbmock + >>> [kbmock.WCSFactory.gen_wcs((10, 10), rot, 0.2) for rot in (0, 90)] + [WCS Keywords + + Number of WCS axes: 2 + CTYPE : 'RA---TAN' 'DEC--TAN' + CRVAL : 10.0 10.0 + CRPIX : 0.0 0.0 + PC1_1 PC1_2 : -5.555555555555556e-05 0.0 + PC2_1 PC2_2 : 0.0 5.555555555555556e-05 + CDELT : 1.0 1.0 + NAXIS : 0 0, WCS Keywords + + Number of WCS axes: 2 + CTYPE : 'RA---TAN' 'DEC--TAN' + CRVAL : 10.0 10.0 + CRPIX : 0.0 0.0 + PC1_1 PC1_2 : 3.7400283533421276e-11 5.555555555554297e-05 + PC2_1 PC2_2 : 5.555555555554297e-05 -3.7400283533421276e-11 + CDELT : 1.0 1.0 + NAXIS : 0 0] """ wcs = WCS(naxis=2) rho = rotation*0.0174533 # deg to rad @@ -79,7 +155,7 @@ def gen_wcs(cls, center_coords, rotation, pixscale, shape=None): wcs.wcs.crpix = [shape[1] // 2, shape[0] // 2] else: wcs.wcs.crpix = [0, 0] - wcs.wcs.crval = center_coords + wcs.wcs.crval = pointing wcs.wcs.cunit = ['deg', 'deg'] wcs.wcs.pc = np.array([ [-scale * np.cos(rho), scale * np.sin(rho)], @@ -90,37 +166,135 @@ def gen_wcs(cls, center_coords, rotation, pixscale, shape=None): return wcs + def next(self): + """Iteratively return WCS from the cycle.""" + for wcs in self.cycle: + yield wcs + def update_from_header(self, header): + """Update WCS template using a header, only updates the cards template + shares with the given header. + + Updates the template WCS in-place. + """ t = self.template.to_header() t.update(header) self.template = WCS(t) - def mock(self, header): + def update_headers(self, headers): + """Update the headers, in-place, with a new mocked WCS. + + If the header contains a WCS, it is updated to match the template. + + Parameters + ---------- + header : `astropy.io.fits.Header` + Header + + Returns + ------- + header : `astropy.io.fits.Header` + Update header. + """ wcs = self.template - if self.cycle is not None: - wcs = self.cycle[self.current % len(self.cycle)] - - if self.dither_pos: - dra = random.uniform(-self.dither_amplitudes[0], self.dither_amplitudes[0]) - ddec = random.uniform(-self.dither_amplitudes[1], self.dither_amplitudes[1]) - wcs.wcs.crval += [dra, ddec] - if self.dither_rot: - ddec = random.uniform(-self.dither_amplitudes[2], self.dither_amplitudes[2]) - rho = self.dither_amplitudes[2]*0.0174533 # deg to rad - rot_matrix = np.array([ - [-np.cos(rho), np.sin(rho)], - [np.sin(rho), np.cos(rho)] - ]) - new_pc = wcs.wcs.pc @ rot_matrix - wcs.wcs.pc = new_pc - - self.current += 1 - header.update(wcs.to_header()) - return header + for header in headers: + if self.cycle is not None: + wcs = self.next() + + if self.dither_pos: + dra = random.uniform(-self.dither_amplitudes[0], self.dither_amplitudes[0]) + ddec = random.uniform(-self.dither_amplitudes[1], self.dither_amplitudes[1]) + wcs.wcs.crval += [dra, ddec] + + if self.dither_rot: + ddec = random.uniform(-self.dither_amplitudes[2], self.dither_amplitudes[2]) + rho = self.dither_amplitudes[2]*0.0174533 # deg to rad + rot_matrix = np.array([ + [-np.cos(rho), np.sin(rho)], + [np.sin(rho), np.cos(rho)] + ]) + new_pc = wcs.wcs.pc @ rot_matrix + wcs.wcs.pc = new_pc + + self.current += 1 + header.update(wcs.to_header()) class HeaderFactory: + """Mocks a header from a given template. + + Callback functions can be defined for individual header cards which are + executed and their respective values are updated for each new mocked header. + + A WCS factory can be attached to this factory to update the related WCS + header keywords. + + Provides two base templates from which to create Headers from, based on + CTIO observatory location and DECam instrument. + + Can generate headers from dict-like template and card overrides. + + Attributes + ---------- + is_dynamic : `bool` + True when factory has a mutable Header cards or a WCS factory. + + Parameters + --------- + metadata : `dict-like` + Header, dict, or a list of cards from which a header is created. + mutables : `list[str]` or `None`, optional + A list of strings, matching header card keys, designating them as a + card that has an associated callback. + callbacks : `list[func]`, `list[class]` or `None` + List of callbacks, functions or classes with a ``__call__`` method, that + will be executed in order to update the respective key in ``mutables`` + See already provided callbacks in `kbmod.mocking.callbacks` module. + has_wcs : `bool` + Attach a WCS to each produced header. + wcs_factory : `WCSFactory` or `None` + A WCS factory to use, if `None` and `has_wcs` is `True`, uses the default + WCS Factory. See `WCSFactory` for details. + + Examples + -------- + >>> import kbmod.mocking as kbmock + >>> hf = kbmock.HeaderFactory.from_primary_template() + >>> hf.mock() + [EXTNAME = 'PRIMARY ' + NAXIS = 0 + BITPIX = 8 + DATE-OBS= '2021-03-19T00:27:21.140552' + NEXTEND = 3 + OBS-LAT = -30.166 + OBS-LONG= -70.814 + OBS-ELEV= 2200 + OBSERVAT= 'CTIO ' ] + >>> hf = kbmock.HeaderFactory.from_ext_template() + >>> hf.mock() + [NAXIS = 2 + NAXIS1 = 2048 + NAXIS2 = 4096 + CRPIX1 = 1024.0 / Pixel coordinate of reference point + CRPIX2 = 2048.0 / Pixel coordinate of reference point + BITPIX = 32 + WCSAXES = 2 / Number of coordinate axes + PC1_1 = -5.5555555555556E-05 / Coordinate transformation matrix element + PC2_2 = 5.5555555555556E-05 / Coordinate transformation matrix element + CDELT1 = 1.0 / [deg] Coordinate increment at reference point + CDELT2 = 1.0 / [deg] Coordinate increment at reference point + CUNIT1 = 'deg' / Units of coordinate increment and value + CUNIT2 = 'deg' / Units of coordinate increment and value + CTYPE1 = 'RA---TAN' / Right ascension, gnomonic projection + CTYPE2 = 'DEC--TAN' / Declination, gnomonic projection + CRVAL1 = 351.0 / [deg] Coordinate value at reference point + CRVAL2 = -5.0 / [deg] Coordinate value at reference point + LONPOLE = 180.0 / [deg] Native longitude of celestial pole + LATPOLE = -5.0 / [deg] Native latitude of celestial pole + MJDREF = 0.0 / [d] MJD of fiducial time + RADESYS = 'ICRS' / Equatorial coordinate system ] + """ primary_template = { "EXTNAME": "PRIMARY", "NAXIS": 0, @@ -132,10 +306,15 @@ class HeaderFactory: "OBS-ELEV": 2200, "OBSERVAT": "CTIO", } + """Template for the Primary header content.""" ext_template = {"NAXIS": 2, "NAXIS1": 2048, "NAXIS2": 4096, "CRPIX1": 1024, "CRPIX2": 2048, "BITPIX": 32} + """Template of an image-like extension header.""" def __validate_mutables(self): + """Validate number of mutables is number of callbacks, and that designated + mutable cards exist in the given header template. + """ # !xor if bool(self.mutables) != bool(self.callbacks): raise ValueError( @@ -176,6 +355,18 @@ def __init__(self, metadata, mutables=None, callbacks=None, has_wcs=False, wcs_f self.counter = 0 def mock(self, n=1): + """Mocks headers, executing callbacks and creating WCS as necessary. + + Parameters + ---------- + n : `int` + Number of headers to mock. + + Returns + ------- + headers : `list[Header]` + Mocked headers. + """ headers = [] # This can't be vectorized because callbacks may share global state for i in range(n): @@ -187,15 +378,36 @@ def mock(self, n=1): for i, mutable in enumerate(self.mutables): header[mutable] = self.callbacks[i](header[mutable]) if self.has_wcs: - header = self.wcs_factory.mock(header) + self.wcs_factory.update_headers([header]) headers.append(header) self.counter += 1 return headers @classmethod - def gen_header(cls, base, overrides, wcs=None): + def gen_header(cls, base, overrides=None, wcs=None): + """Generate a header from a base template and overrides. + + If a WCS is given, and the header contains only a partially defined + WCS, updates only the missing WCS cards and values. + + Parameters + ---------- + base : `Header` or `dict-like` + Header or a dict-like base template for the header. + overrides : `Header`, `dict-like` or `None`, optional + Keys and values that will either be updated or extended to the base + template. + wcs : `astropy.wcs.WCS` or `None`, optional + WCS template to use to update the header values. + + Returns + ------- + header : `astropy.io.fits.Header` + A header. + """ header = Header(base) - header.update(overrides) + if overrides is not None: + header.update(overrides) if wcs is not None: # Sync WCS with header + overwrites @@ -208,12 +420,58 @@ def gen_header(cls, base, overrides, wcs=None): @classmethod def from_primary_template(cls, overrides=None, mutables=None, callbacks=None): + """Create a header assuming the default template of a PRIMARY header. + + Override, or extend the default template with keys and values in override. + Attach callbacks to mutable cards. + + Parameters + ---------- + overrides : `dict-like` or `None`, optional + A header, or different dict-like, object used to override the base + template keys and values. + mutables : `list[str]` or `None`, optional + List of card keys designated as mutable. + callbacks : `list[callable]` or `None`, optional + List of callable functions or classes that match the mutables. + + Returns + ------- + factory : `HeaderFactory` + Header factory. + """ hdr = cls.gen_header(base=cls.primary_template, overrides=overrides) return cls(hdr, mutables, callbacks) @classmethod def from_ext_template(cls, overrides=None, mutables=None, callbacks=None, shape=None, wcs=None): + """Create an extension header assuming the default template of an image + like header. + + Override, or extend the default template with keys and values in override. + Attach callbacks to mutable cards. + + Parameters + ---------- + overrides : `dict-like` or `None`, optional + A header, or different dict-like, object used to override the base + template keys and values. + mutables : `list[str]` or `None`, optional + List of card keys designated as mutable. + callbacks : `list[callable]` or `None`, optional + List of callable functions or classes that match the mutables. + shape : `tuple` or `None`, optional + Update the template description of data dimensions and the reference + pixel. + wcs : `astropy.wcs.WCS` or `None`, optional + WCS Factory to use. + + Returns + ------- + factory : `HeaderFactory` + Header factory. + """ ext_template = cls.ext_template.copy() if shape is not None: @@ -227,6 +485,41 @@ def from_ext_template(cls, overrides=None, mutables=None, callbacks=None, shape= class ArchivedHeader(HeaderFactory): + """Archived header factory. + + Archived headers are those that were produced with the modified version of + AstroPy's ``fitsheader`` utility available in this module. See + + archiveheaders -h + + for more details. To produce an archive, with KBMOD installed, execute the + following: + + archiveheaders *fits > archive.ecsv | tar -cf headers.tar.bz2 archive.ecsv + + Attributes + ---------- + lexical_type_map : `dict` + A map between the serialized names of built-in types and the built-in + types. Used to cast the serialized card values before creating a Header. + compression : `str` + By default it's assumed the TAR archive was compressed with the ``bz2`` + compression algorithm. + format : `str` + The format in which the file of serialized header cards was written in. + An AstroPy By default, this is assumed to be ``ascii.ecsv`` + + Parameters + ---------- + archive_name : `str` + Name of the TAR archive containing serialized headers. + fname : `str` + Name of the file, within the archive, containing the headers. + external : `bool` + When `True`, file will be searched for relative to the current working + directory. Otherwise, the file is searched for within the header archive + provided with this module. + """ # will almost never be anything else. Rather, it would be a miracle if it # were something else, since FITS standard shouldn't allow it. Further # casting by some packages will always be casting implemented in terms of @@ -240,26 +533,43 @@ class ArchivedHeader(HeaderFactory): """Map between type names and types themselves.""" compression = "bz2" + """Compression used to compress the archived headers.""" format = "ascii.ecsv" + """Format of the archive, and AstroPy'S ASCII module valid identifier of a format.""" - def __init__(self, archive_name, fname): + def __init__(self, archive_name, fname, external=False): super().__init__({}) - self.table = header_archive_to_table(archive_name, fname, self.compression, self.format) + self.table = header_archive_to_table(archive_name, fname, self.compression, self.format, external=external) # Create HDU groups for easier iteration self.table = self.table.group_by("filename") self.n_hdus = len(self.table) - def lexical_cast(self, value, format): + def lexical_cast(self, value, vtype): """Cast str literal of a type to the type itself. Supports just the builtin Python types. """ - if format in self.lexical_type_map: - return self.lexical_type_map[format](value) + if vtype in self.lexical_type_map: + return self.lexical_type_map[vtype](value) return value def get_item(self, group_idx, hdr_idx): + """Get an extension of an HDUList within the archive without + incrementing the mocking counter. + + Parameters + ---------- + group_idx : `int` + Index of the HDUList to fetch from the archive. + hdr_idx : `int` + Index of the extension within the HDUList. + + Returns + ------- + header : `Header` + Header of the given extension of the targeted HDUList. + """ header = Header() # this is equivalent to one hdulist worth of headers group = self.table.groups[group_idx] @@ -271,6 +581,18 @@ def get_item(self, group_idx, hdr_idx): return header def get(self, group_idx): + """Get an HDUList within the archive without incrementing the mocking counter. + + Parameters + ---------- + group_idx : `int` + Index of the HDUList to fetch from the archive. + + Returns + ------- + headers : `list[Header]` + All headers of the targeted HDUList. + """ headers = [] # this is a bit repetitive but it saves recreating # groups for one HDUL-equivalent many times @@ -288,6 +610,18 @@ def get(self, group_idx): return headers def mock(self, n=1): + """Mock all headers within n HDULists. + + Parameters + ---------- + n : `int` + Number of HDUList units which headers we want mocked. + + Returns + ------- + headers : `list[list[Header]]` + A list of containing headers of each extension of an HDUList. + """ res = [] for _ in range(n): res.append(self.get(self.counter)) diff --git a/src/kbmod/mocking/data/headers_archive.tar.bz2 b/src/kbmod/mocking/headers_archive.tar.bz2 similarity index 100% rename from src/kbmod/mocking/data/headers_archive.tar.bz2 rename to src/kbmod/mocking/headers_archive.tar.bz2 diff --git a/src/kbmod/mocking/utils.py b/src/kbmod/mocking/utils.py index d79a48bcb..40f0af93e 100644 --- a/src/kbmod/mocking/utils.py +++ b/src/kbmod/mocking/utils.py @@ -4,20 +4,22 @@ from astropy.table import Table, MaskedColumn -def get_absolute_data_path(file_or_directory): - test_dir = path.abspath(path.dirname(__file__)) - data_dir = path.join(test_dir, "data") - return path.join(data_dir, file_or_directory) - - -def get_absolute_demo_data_path(file_or_directory): - project_root_dir = path.abspath(path.dirname(path.dirname(__file__))) - data_dir = path.join(project_root_dir, "data") - return path.join(data_dir, file_or_directory) - - -def header_archive_to_table(archive_path, fname, compression, format): - archive_path = get_absolute_data_path(archive_path) +#def get_absolute_data_path(file_or_directory): +# test_dir = path.abspath(path.dirname(__file__)) +# data_dir = path.join(test_dir, "archived_data") +# return path.join(data_dir, file_or_directory) +# +# +#def get_absolute_demo_data_path(file_or_directory): +# project_root_dir = path.abspath(path.dirname(path.dirname(__file__))) +# data_dir = path.join(project_root_dir, "archived_data") +# return path.join(data_dir, file_or_directory) + + +def header_archive_to_table(archive_path, fname, compression, format, external=True): + if not external: + mocking_dir = path.abspath(path.dirname(__file__)) + archive_path = path.join(mocking_dir, archive_path) with tarfile.open(archive_path, f"r:{compression}") as archive: tblfile = archive.extractfile(fname) table = Table.read(tblfile.read().decode(), format=format) diff --git a/tests/dump_headers.py b/tests/dump_headers.py deleted file mode 100644 index 74fbc60f4..000000000 --- a/tests/dump_headers.py +++ /dev/null @@ -1,500 +0,0 @@ -# Modified from the original Astropy code to add a card format to the -# tabular output. All rights belong to the original authors. - -# Licensed under a 3-clause BSD style license - see LICENSE.rst -""" -``fitsheader`` is a command line script based on astropy.io.fits for printing -the header(s) of one or more FITS file(s) to the standard output in a human- -readable format. - -Example uses of fitsheader: - -1. Print the header of all the HDUs of a .fits file:: - - $ fitsheader filename.fits - -2. Print the header of the third and fifth HDU extension:: - - $ fitsheader --extension 3 --extension 5 filename.fits - -3. Print the header of a named extension, e.g. select the HDU containing - keywords EXTNAME='SCI' and EXTVER='2':: - - $ fitsheader --extension "SCI,2" filename.fits - -4. Print only specific keywords:: - - $ fitsheader --keyword BITPIX --keyword NAXIS filename.fits - -5. Print keywords NAXIS, NAXIS1, NAXIS2, etc using a wildcard:: - - $ fitsheader --keyword NAXIS* filename.fits - -6. Dump the header keywords of all the files in the current directory into a - machine-readable csv file:: - - $ fitsheader --table ascii.csv *.fits > keywords.csv - -7. Specify hierarchical keywords with the dotted or spaced notation:: - - $ fitsheader --keyword ESO.INS.ID filename.fits - $ fitsheader --keyword "ESO INS ID" filename.fits - -8. Compare the headers of different fits files, following ESO's ``fitsort`` - format:: - - $ fitsheader --fitsort --extension 0 --keyword ESO.INS.ID *.fits - -9. Same as above, sorting the output along a specified keyword:: - - $ fitsheader -f -s DATE-OBS -e 0 -k DATE-OBS -k ESO.INS.ID *.fits - -10. Sort first by OBJECT, then DATE-OBS:: - - $ fitsheader -f -s OBJECT -s DATE-OBS *.fits - -Note that compressed images (HDUs of type -:class:`~astropy.io.fits.CompImageHDU`) really have two headers: a real -BINTABLE header to describe the compressed data, and a fake IMAGE header -representing the image that was compressed. Astropy returns the latter by -default. You must supply the ``--compressed`` option if you require the real -header that describes the compression. - -With Astropy installed, please run ``fitsheader --help`` to see the full usage -documentation. -""" - -import argparse -import sys - -import numpy as np - -from astropy import __version__, log -from astropy.io import fits - -DESCRIPTION = """ -Print the header(s) of a FITS file. Optional arguments allow the desired -extension(s), keyword(s), and output format to be specified. -Note that in the case of a compressed image, the decompressed header is -shown by default. - -This script is part of the Astropy package. See -https://docs.astropy.org/en/latest/io/fits/usage/scripts.html#module-astropy.io.fits.scripts.fitsheader -for further documentation. -""".strip() - - -class ExtensionNotFoundException(Exception): - """Raised if an HDU extension requested by the user does not exist.""" - - -class HeaderFormatter: - """Class to format the header(s) of a FITS file for display by the - `fitsheader` tool; essentially a wrapper around a `HDUList` object. - - Example usage: - fmt = HeaderFormatter('/path/to/file.fits') - print(fmt.parse(extensions=[0, 3], keywords=['NAXIS', 'BITPIX'])) - - Parameters - ---------- - filename : str - Path to a single FITS file. - verbose : bool - Verbose flag, to show more information about missing extensions, - keywords, etc. - - Raises - ------ - OSError - If `filename` does not exist or cannot be read. - """ - - def __init__(self, filename, verbose=True): - self.filename = filename - self.verbose = verbose - self._hdulist = fits.open(filename) - - def parse(self, extensions=None, keywords=None, compressed=False): - """Returns the FITS file header(s) in a readable format. - - Parameters - ---------- - extensions : list of int or str, optional - Format only specific HDU(s), identified by number or name. - The name can be composed of the "EXTNAME" or "EXTNAME,EXTVER" - keywords. - - keywords : list of str, optional - Keywords for which the value(s) should be returned. - If not specified, then the entire header is returned. - - compressed : bool, optional - If True, shows the header describing the compression, rather than - the header obtained after decompression. (Affects FITS files - containing `CompImageHDU` extensions only.) - - Returns - ------- - formatted_header : str or astropy.table.Table - Traditional 80-char wide format in the case of `HeaderFormatter`; - an Astropy Table object in the case of `TableHeaderFormatter`. - """ - # `hdukeys` will hold the keys of the HDUList items to display - if extensions is None: - hdukeys = range(len(self._hdulist)) # Display all by default - else: - hdukeys = [] - for ext in extensions: - try: - # HDU may be specified by number - hdukeys.append(int(ext)) - except ValueError: - # The user can specify "EXTNAME" or "EXTNAME,EXTVER" - parts = ext.split(",") - if len(parts) > 1: - extname = ",".join(parts[0:-1]) - extver = int(parts[-1]) - hdukeys.append((extname, extver)) - else: - hdukeys.append(ext) - - # Having established which HDUs the user wants, we now format these: - return self._parse_internal(hdukeys, keywords, compressed) - - def _parse_internal(self, hdukeys, keywords, compressed): - """The meat of the formatting; in a separate method to allow overriding.""" - result = [] - for idx, hdu in enumerate(hdukeys): - try: - cards = self._get_cards(hdu, keywords, compressed) - except ExtensionNotFoundException: - continue - - if idx > 0: # Separate HDUs by a blank line - result.append("\n") - result.append(f"# HDU {hdu} in {self.filename}:\n") - for c in cards: - result.append(f"{c}\n") - return "".join(result) - - def _get_cards(self, hdukey, keywords, compressed): - """Returns a list of `astropy.io.fits.card.Card` objects. - - This function will return the desired header cards, taking into - account the user's preference to see the compressed or uncompressed - version. - - Parameters - ---------- - hdukey : int or str - Key of a single HDU in the HDUList. - - keywords : list of str, optional - Keywords for which the cards should be returned. - - compressed : bool, optional - If True, shows the header describing the compression. - - Raises - ------ - ExtensionNotFoundException - If the hdukey does not correspond to an extension. - """ - # First we obtain the desired header - try: - if compressed: - # In the case of a compressed image, return the header before - # decompression (not the default behavior) - header = self._hdulist[hdukey]._header - else: - header = self._hdulist[hdukey].header - except (IndexError, KeyError): - message = f"{self.filename}: Extension {hdukey} not found." - if self.verbose: - log.warning(message) - raise ExtensionNotFoundException(message) - - if not keywords: # return all cards - cards = header.cards - else: # specific keywords are requested - cards = [] - for kw in keywords: - try: - crd = header.cards[kw] - if isinstance(crd, fits.card.Card): # Single card - cards.append(crd) - else: # Allow for wildcard access - cards.extend(crd) - except KeyError: # Keyword does not exist - if self.verbose: - log.warning(f"{self.filename} (HDU {hdukey}): Keyword {kw} not found.") - return cards - - def close(self): - self._hdulist.close() - - -class TableHeaderFormatter(HeaderFormatter): - """Class to convert the header(s) of a FITS file into a Table object. - The table returned by the `parse` method will contain four columns: - filename, hdu, keyword, and value. - - Subclassed from HeaderFormatter, which contains the meat of the formatting. - """ - - def _parse_internal(self, hdukeys, keywords, compressed): - """Method called by the parse method in the parent class.""" - tablerows = [] - for hdu in hdukeys: - try: - for card in self._get_cards(hdu, keywords, compressed): - tablerows.append( - { - "filename": self.filename, - "hdu": hdu, - "keyword": card.keyword, - "value": str(card.value), - "format": type(card.value).__name__, - } - ) - except ExtensionNotFoundException: - pass - - if tablerows: - from astropy import table - - return table.Table(tablerows) - return None - - -def print_headers_traditional(args): - """Prints FITS header(s) using the traditional 80-char format. - - Parameters - ---------- - args : argparse.Namespace - Arguments passed from the command-line as defined below. - """ - for idx, filename in enumerate(args.filename): # support wildcards - if idx > 0 and not args.keyword: - print() # print a newline between different files - - formatter = None - try: - formatter = HeaderFormatter(filename) - print(formatter.parse(args.extensions, args.keyword, args.compressed), end="") - except OSError as e: - log.error(str(e)) - finally: - if formatter: - formatter.close() - - -def print_headers_as_table(args): - """Prints FITS header(s) in a machine-readable table format. - - Parameters - ---------- - args : argparse.Namespace - Arguments passed from the command-line as defined below. - """ - tables = [] - # Create a Table object for each file - for filename in args.filename: # Support wildcards - formatter = None - try: - formatter = TableHeaderFormatter(filename) - tbl = formatter.parse(args.extensions, args.keyword, args.compressed) - if tbl: - tables.append(tbl) - except OSError as e: - log.error(str(e)) # file not found or unreadable - finally: - if formatter: - formatter.close() - - # Concatenate the tables - if len(tables) == 0: - return False - elif len(tables) == 1: - resulting_table = tables[0] - else: - from astropy import table - - resulting_table = table.vstack(tables) - # Print the string representation of the concatenated table - resulting_table.write(sys.stdout, format=args.table) - - -def print_headers_as_comparison(args): - """Prints FITS header(s) with keywords as columns. - - This follows the dfits+fitsort format. - - Parameters - ---------- - args : argparse.Namespace - Arguments passed from the command-line as defined below. - """ - from astropy import table - - tables = [] - # Create a Table object for each file - for filename in args.filename: # Support wildcards - formatter = None - try: - formatter = TableHeaderFormatter(filename, verbose=False) - tbl = formatter.parse(args.extensions, args.keyword, args.compressed) - if tbl: - # Remove empty keywords - tbl = tbl[np.where(tbl["keyword"] != "")] - else: - tbl = table.Table([[filename]], names=("filename",)) - tables.append(tbl) - except OSError as e: - log.error(str(e)) # file not found or unreadable - finally: - if formatter: - formatter.close() - - # Concatenate the tables - if len(tables) == 0: - return False - elif len(tables) == 1: - resulting_table = tables[0] - else: - resulting_table = table.vstack(tables) - - # If we obtained more than one hdu, merge hdu and keywords columns - hdus = resulting_table["hdu"] - if np.ma.isMaskedArray(hdus): - hdus = hdus.compressed() - if len(np.unique(hdus)) > 1: - for tab in tables: - new_column = table.Column([f"{row['hdu']}:{row['keyword']}" for row in tab]) - tab.add_column(new_column, name="hdu+keyword") - keyword_column_name = "hdu+keyword" - else: - keyword_column_name = "keyword" - - # Check how many hdus we are processing - final_tables = [] - for tab in tables: - final_table = [table.Column([tab["filename"][0]], name="filename")] - if "value" in tab.colnames: - for row in tab: - if row["keyword"] in ("COMMENT", "HISTORY"): - continue - final_table.append(table.Column([row["value"]], name=row[keyword_column_name])) - final_tables.append(table.Table(final_table)) - final_table = table.vstack(final_tables) - # Sort if requested - if args.sort: - final_table.sort(args.sort) - # Reorganise to keyword by columns - final_table.pprint(max_lines=-1, max_width=-1) - - -if __name__ == "__main__": - """This is the main function called by the `fitsheader` script.""" - parser = argparse.ArgumentParser( - description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter - ) - - parser.add_argument("--version", action="version", version=f"%(prog)s {__version__}") - - parser.add_argument( - "-e", - "--extension", - metavar="HDU", - action="append", - dest="extensions", - help=( - "specify the extension by name or number; this argument can " - "be repeated to select multiple extensions" - ), - ) - parser.add_argument( - "-k", - "--keyword", - metavar="KEYWORD", - action="append", - type=str, - help=( - "specify a keyword; this argument can be repeated to select " - "multiple keywords; also supports wildcards" - ), - ) - mode_group = parser.add_mutually_exclusive_group() - mode_group.add_argument( - "-t", - "--table", - nargs="?", - default=False, - metavar="FORMAT", - help=( - "print the header(s) in machine-readable table format; the " - 'default format is "ascii.fixed_width" (can be "ascii.csv", ' - '"ascii.html", "ascii.latex", "fits", etc)' - ), - ) - mode_group.add_argument( - "-f", - "--fitsort", - action="store_true", - help=("print the headers as a table with each unique " "keyword in a given column (fitsort format) "), - ) - parser.add_argument( - "-s", - "--sort", - metavar="SORT_KEYWORD", - action="append", - type=str, - help=( - "sort output by the specified header keywords, can be repeated to " - "sort by multiple keywords; Only supported with -f/--fitsort" - ), - ) - parser.add_argument( - "-c", - "--compressed", - action="store_true", - help=( - "for compressed image data, show the true header which describes " - "the compression rather than the data" - ), - ) - parser.add_argument( - "filename", - nargs="+", - help="path to one or more files; wildcards are supported", - ) - args = parser.parse_args() - # If `--table` was used but no format specified, - # then use ascii.fixed_width by default - if args.table is None: - args.table = "ascii.fixed_width" - - if args.sort: - args.sort = [key.replace(".", " ") for key in args.sort] - if not args.fitsort: - log.error("Sorting with -s/--sort is only supported in conjunction with" " -f/--fitsort") - # 2: Unix error convention for command line syntax - sys.exit(2) - - if args.keyword: - args.keyword = [key.replace(".", " ") for key in args.keyword] - - # Now print the desired headers - try: - if args.table: - print_headers_as_table(args) - elif args.fitsort: - print_headers_as_comparison(args) - else: - print_headers_traditional(args) - except OSError: - # A 'Broken pipe' OSError may occur when stdout is closed prematurely, - # eg. when calling `fitsheader file.fits | head`. We let this pass. - pass diff --git a/tests/test_end_to_end.py b/tests/test_end_to_end.py index 9f5ea7358..f6f645c5b 100644 --- a/tests/test_end_to_end.py +++ b/tests/test_end_to_end.py @@ -38,6 +38,7 @@ def setUp(self): self.factory = kbmock.EmptyFits() def test_empty(self): + """Test no detections are found on empty images.""" hduls = self.factory.mock(n=10) # create the most permissive search configs you can come up with @@ -61,6 +62,7 @@ def test_empty(self): self.assertTrue(len(results) == 0) def test_static_objects(self): + """Test no detections are found on images containing static objects.""" src_cat = kbmock.SourceCatalog.from_defaults(seed=100) factory = kbmock.SimpleFits(src_cat=src_cat) hduls = factory.mock(10) @@ -111,7 +113,28 @@ def setUp(self): } ) - def xmatch_best(self, obj, results, match_cols={"x_mean": "x", "y_mean": "y", "vx": "vx", "vy": "vy"}): + def xmatch_best(self, obj, results, + match_cols={"x_mean": "x", "y_mean": "y", "vx": "vx", "vy": "vy"}): + """Finds the result that minimizes the L2 distance to the target object. + + Parameters + ---------- + obj : `astropy.table.Row` + Row, or a table with single entry, containing the target object. + results : `astropy.table.Table` + Table of objects from which the closest matching one will be returned. + match_cols : `dict`, optional + Dictionary of column names on which to perform the matching. Keys + of the dictionary are columns from ``obj`` and values of the dict + are columns from ``results``. + + Returns + ------- + result : `astropy.table.Row` + Best matching result + distances: `np.array` + Array of calculated L2 distances of ``obj`` to all given results. + """ objk, resk = [], [] for k, v in match_cols.items(): if k in obj.columns and v in results.table.columns: @@ -126,6 +149,28 @@ def xmatch_best(self, obj, results, match_cols={"x_mean": "x", "y_mean": "y", "v def assertResultValuesWithinSpec(self, expected, result, spec, match_cols={"x_mean": "x", "y_mean": "y", "vx": "vx", "vy": "vy"}): + """Asserts expected object matches the given result object within + specification. + + Parameters + ---------- + expected : `astropy.table.Row` + Row, or table with single entry, containing the target object. + result : `astropy.table.Row` + Row, or table with single entry, containing the found object. + spec : `float` + Specification of maximum deviation of the expected values from the + found resulting values. For example, a spec of 3 means results can + be 3 or less pixels away from the expected position. + match_cols : `dict`, optional + Dictionary of column names on which to perform the matching. Keys + of the dictionary are columns from ``obj`` and values of the dict + are columns from ``results``. + + Raises + ------- + AssertionError - if comparison fails. + """ for ekey, rkey in match_cols.items(): info = ( f"\n Expected: \n {expected[tuple(match_cols.keys())]} \n" @@ -134,6 +179,20 @@ def assertResultValuesWithinSpec(self, expected, result, spec, self.assertLessEqual(abs(expected[ekey] - result[rkey]), spec, info) def run_single_search(self, data, expected, spec=5): + """Runs a KBMOD search on given data and tests the results lie within + specification from the expected. + + Parameters + ---------- + data : `list[str]` or `list[astropy.io.fits.HDUList]` + List of targets processable by the TestDataStandardizer. + expected : `kbmod.mocking.ObjectCatalog` + Object catalog expected to be retrieved from the run. + spec : `float` + Specification of maximum deviation of the expected values from the + found resulting values. For example, a spec of 3 means results can + be 3 or less pixels away from the expected position. + """ ic = ImageCollection.fromTargets(data, force="TestDataStd") wu = ic.toWorkUnit(search_config=self.config) results = SearchRunner().run_search_from_work_unit(wu) @@ -145,6 +204,7 @@ def run_single_search(self, data, expected, spec=5): self.assertResultValuesWithinSpec(obj, res, spec) def test_exact_motion(self): + """Test exact searches are recovered in all 8 cardinal directions.""" search_vs = list(itertools.product([-20, 0, 20], repeat=2)) search_vs.remove((0, 0)) for (vx, vy) in search_vs: @@ -162,6 +222,7 @@ def test_exact_motion(self): self.run_single_search(hduls, obj_cat, 1) def test_random_motion(self): + """Repeat searches for randomly inserted objects.""" # Mock the data and repeat tests. The random catalog # creation guarantees a diverse set of changing test values for i in range(self.repeat_n_times): @@ -171,7 +232,8 @@ def test_random_motion(self): hduls = factory.mock(n=self.n_imgs) self.run_single_search(hduls, obj_cat) - def test_reprojected_search(self): + def test_resampled_search(self): + """Search for objects in a set of resampled images; randomly dithered pointings and orientations.""" # 0. Setup self.shape = (500, 500) self.start_pos = (10, 10) # (ra, dec) in deg @@ -204,7 +266,7 @@ def test_reprojected_search(self): pixscale=pixscale, dither_pos=True, dither_rot=True, - dither_amplitudes=(0.001, 0.001, 0.01) + dither_amplitudes=(0.001, 0.001, 10) ) prim_hdr_factory = kbmock.HeaderFactory.from_primary_template( @@ -283,27 +345,6 @@ def test_reprojected_search(self): self.assertGreaterEqual(len(results), 1) self.assertResultValuesWithinSpec(best_cat, best_res, 10) -# def test_diffim_mocks(self): -# src_cat = kbmock.SourceCatalog.from_defaults() -# obj_cat = kbmock.ObjectCatalog.from_defaults(self.param_ranges, n=1) -# factory = kbmock.DECamImdiff.from_defaults(with_data=True, src_cat=src_cat, obj_cat=obj_cat) -# hduls = factory.mock(n=self.n_imgs) -# -# -# ic = ImageCollection.fromTargets(hduls, force="TestDataStd") -# wu = ic.toWorkUnit(search_config=self.config) -# results = SearchRunner().run_search_from_work_unit(wu) -# -# # Run tests -# self.assertGreaterEqual(len(results), 1) -# for res in results: -# diff = abs(obj_cat.table["y_mean"] - res["y"]) -# obj = obj_cat.table[diff == diff.min()] -# self.assertLessEqual(abs(obj["x_mean"] - res["x"]), 5) -# self.assertLessEqual(abs(obj["y_mean"] - res["y"]), 5) -# self.assertLessEqual(abs(obj["vx"] - res["vx"]), 5) -# self.assertLessEqual(abs(obj["vy"] - res["vy"]), 5) - #### diff --git a/tests/test_mocking.py b/tests/test_mocking.py index b03ce580e..b999c6fb3 100644 --- a/tests/test_mocking.py +++ b/tests/test_mocking.py @@ -92,6 +92,7 @@ def test(self): self.assertEqual(step_t.to("day").value, 1.0) def test_static_src_cat(self): + """Test that static source catalog works and is correctly rendered.""" src_cat = kbmock.SourceCatalog.from_defaults() src_cat2 = kbmock.SourceCatalog.from_defaults() self.assertEqual(src_cat.config["mode"], "static") @@ -121,6 +122,18 @@ def test_static_src_cat(self): self.assertGreaterEqual(hdul["IMAGE"].data[y, x].min(), 90) def validate_cat_render(self, hduls, cats, expected_gte=90): + """Validate that catalog objects appear in the given images. + + Parameters + ---------- + hduls : `list[astropy.io.fits.HDUList]` + List of FITS files to check. + cats : `list[astropy.table.Table]` + List of catalog realizations containing the coordinate of objects + to check for. + expected_gte : `float` + Expected minimal value of the pixel at the object's location. + """ for hdul, cat in zip(hduls, cats): x = np.round(cat["x_mean"].data).astype(int) y = np.round(cat["y_mean"].data).astype(int) @@ -128,6 +141,7 @@ def validate_cat_render(self, hduls, cats, expected_gte=90): self.assertGreaterEqual(hdul["VARIANCE"].data[y, x].min(), expected_gte) def test_progressive_obj_cat(self): + """Test progressive catalog renders properly.""" obj_cat = kbmock.ObjectCatalog.from_defaults() obj_cat2 = kbmock.ObjectCatalog.from_defaults() self.assertEqual(obj_cat.config["mode"], "progressive") @@ -159,6 +173,7 @@ def test_progressive_obj_cat(self): self.validate_cat_render(hduls, cats) def test_folding_obj_cat(self): + """Test folding catalog renders properly.""" # Set up shared values for the whole setup # like starting positions of object and timestamps start_x = np.ones((self.n_obj,)) * 10 @@ -189,13 +204,12 @@ def test_folding_obj_cat(self): factory.prim_hdr = prim_hdr_factory hduls = factory.mock(n=self.n_imgs) - # Run tests and ensure we have rendered the object in correct - # positions obj_cat.reset() cats = obj_cat.mock(n=self.n_imgs, t=self.timestamps) self.validate_cat_render(hduls, cats) def test_progressive_sky_cat(self): + """Test progressive catalog based on on-sky coordinates.""" # a 10-50 in x by a 10-90 in y box using default WCS #self.shape = (500, 500) param_ranges = { @@ -221,6 +235,7 @@ def test_progressive_sky_cat(self): self.validate_cat_render(hduls, cats) def test_folding_sky_cat(self): + """Test folding catalog based on on-sky coordinates.""" # a 20x20 box in pixels using a default WCS start_ra = np.linspace(350.998, 351.002, self.n_obj) start_dec = np.linspace(-5.0077, -5.0039, self.n_obj) @@ -254,6 +269,7 @@ def test_folding_sky_cat(self): # TODO: move to pytest and mark as xfail def test_noise_gen(self): + """Test noise renders with expected statistical properties.""" factory = kbmock.SimpleFits(shape=(1000, 1000), with_noise=True) hdul = factory.mock()[0] self.assertAlmostEqual(hdul["IMAGE"].data.mean(), 10, 1)