-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmask-image.py
123 lines (94 loc) · 4.5 KB
/
mask-image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
from functools import reduce
import wget
import cv2
import numpy as np
from PIL import Image
import mediapipe as mp
BaseOptions = mp.tasks.BaseOptions
ImageSegmenter = mp.tasks.vision.ImageSegmenter
ImageSegmenterOptions = mp.tasks.vision.ImageSegmenterOptions
VisionRunningMode = mp.tasks.vision.RunningMode
MASK_OPTION_0_BACKGROUND = 'background'
MASK_OPTION_1_HAIR = 'hair'
MASK_OPTION_2_BODY = 'body (skin)'
MASK_OPTION_3_FACE = 'face (skin)'
MASK_OPTION_4_CLOTHES = 'clothes'
image_path = f'D:\\stable-diffusion\\Faces - IP Adaptor\\PXL_20230904_215912385.PORTRAIT.jpg'
output_image_path = f'D:\\stable-diffusion\\Faces - IP Adaptor\\PXL_20230904_215912385.PORTRAIT-masked.jpg'
if os.path.exists(output_image_path):
os.remove(output_image_path)
image = Image.open(f"{image_path}")
mask_targets = [MASK_OPTION_0_BACKGROUND]
mask_dilation = 0
model_folder_path = 'mediapipe'
os.makedirs(model_folder_path, exist_ok=True)
model_path = os.path.join(model_folder_path, 'selfie_multiclass_256x256.tflite')
model_url = 'https://storage.googleapis.com/mediapipe-models/image_segmenter/selfie_multiclass_256x256/float32/latest/selfie_multiclass_256x256.tflite'
if not os.path.exists(model_path):
print(f"Downloading 'selfie_multiclass_256x256.tflite' model")
wget.download(model_url, model_path)
options = ImageSegmenterOptions(base_options=BaseOptions(model_asset_path=model_path),
running_mode=VisionRunningMode.IMAGE,
output_category_mask=True)
def get_mediapipe_image(image: Image) -> mp.Image:
# Convert gr.Image to NumPy array
numpy_image = np.asarray(image)
image_format = mp.ImageFormat.SRGB
# Convert BGR to RGB (if necessary)
if numpy_image.shape[-1] == 4:
image_format = mp.ImageFormat.SRGBA
elif numpy_image.shape[-1] == 3:
image_format = mp.ImageFormat.SRGB
numpy_image = cv2.cvtColor(numpy_image, cv2.COLOR_BGR2RGB)
return mp.Image(image_format=image_format, data=numpy_image)
# Create the image segmenter
with ImageSegmenter.create_from_options(options) as segmenter:
# Retrieve the masks for the segmented image
media_pipe_image = get_mediapipe_image(image=image)
segmented_masks = segmenter.segment(media_pipe_image)
masks = []
for i, target in enumerate(mask_targets):
# https://developers.google.com/mediapipe/solutions/vision/image_segmenter#multiclass-model
# 0 - background
# 1 - hair
# 2 - body - skin
# 3 - face - skin
# 4 - clothes
# 5 - others(accessories)
mask_index = 0
if target == MASK_OPTION_1_HAIR:
mask_index = 1
if target == MASK_OPTION_2_BODY:
mask_index = 2
if target == MASK_OPTION_3_FACE:
mask_index = 3
if target == MASK_OPTION_4_CLOTHES:
mask_index = 4
masks.append(segmented_masks.confidence_masks[mask_index])
image_data = media_pipe_image.numpy_view()
# convert the image shape from "rgb" to "rgba" aka add the alpha channel
if image_data.shape[-1] == 3:
image_shape = (image_data.shape[0], image_data.shape[1], 4)
alpha_channel = np.ones((image_shape[0], image_shape[1], 1), dtype=np.uint8) * 255
image_data = np.concatenate((image_data, alpha_channel), axis=2)
image_shape = image_data.shape
mask_background_array = np.zeros(image_shape, dtype=np.uint8)
mask_background_array[:] = (255, 255, 255, 255)
#mask_foreground_array = np.zeros(image_shape, dtype=np.uint8)
#mask_foreground_array[:] = (255, 255, 255, 255)
mask_arrays = []
for i, mask in enumerate(masks):
condition = np.stack((mask.numpy_view(),) * image_shape[-1], axis=-1) > 0.25
mask_array = np.where(condition, mask_background_array, image_data)
mask_arrays.append(mask_array)
# Merge our masks taking the maximum from each
merged_mask_arrays = reduce(np.maximum, mask_arrays)
# Dilate or erode the mask
if mask_dilation > 0:
merged_mask_arrays = cv2.dilate(merged_mask_arrays, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*mask_dilation + 1, 2*mask_dilation + 1), (mask_dilation, mask_dilation)))
elif mask_dilation < 0:
merged_mask_arrays = cv2.erode(merged_mask_arrays, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*mask_dilation + 1, 2*mask_dilation + 1), (mask_dilation, mask_dilation)))
# Create the image
mask_image = Image.fromarray(cv2.cvtColor(merged_mask_arrays, cv2.COLOR_BGR2RGB))
mask_image.save(output_image_path)